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Introduction

Analysis is concerned with continuity and convergence. Investigation of these

ideas led to the notions of topology and topological spaces. Once these

had been introduced, they became subjects in their own right, which were

investigated in fine detail to see how far the theory might lead (an excellent

illustration of this is given by the fascinating book by Steen and Seebach [SS]).

In practice, however, a great deal of analysis is concerned with what

happens on a very restricted class of topological spaces, namely, the Polish

spaces. A Polish space is a separable topological space whose topology is

defined by a complete metric. Important examples include Euclidean space,

pathwise-connected Riemannian manifolds, compact metric spaces and sepa-

rable Banach spaces.

The purpose of this book is to develop the study of analysis on Polish spaces.

It consists of three parts. The first considers topological properties of Polish

spaces, and the second deals with the theory of measures on Polish spaces.

In the third part, we give an introduction to the theory of optimal transportation.

This makes essential use of the results of the first two parts, or modifications of

them. It was, in fact, study of optimal transportation that led to the realization

of how much its study required properties of Polish spaces, and measures

on them.

There are three important advantages of restricting attention to Polish

spaces. First, many of the curious complications of the general topological

theory disappear. For example, a subspace of a separable topological space

need not be separable, whereas a subspace of a separable metric space is always

separable. Secondly, the proofs of standard results are frequently much easier

in this restricted setting. For example, Urysohn’s lemma for normal topological

spaces is quite delicate, whereas it is very easy for metric spaces. Thirdly,

Polish spaces enjoy some very important properties. Thus it follows from

Alexandroff’s theorem that a topological space is a Polish space if and only
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2 Introduction

if it is homeomorphic to a Gδ subset of the Hilbert cube H = [0, 1]N, which

is a compact metrizable space. From this, or directly, it follows that a Borel

measure on a Polish space is tight (Ulam’s theorem: the measure of a Borel set

can be approximated from below by the measures of compact sets contained in

it). It also means that we can push forward a Borel measure on a Polish space

X to a Borel measure on a compact metric space containing X. This greatly

simplifies both the measure theory and also the construction of measures. In

fact, I believe that almost all the probability measures that arise in practice are

Borel measures on Polish spaces; one important exception, which we do not

consider or need, is the theory of uniform central limit theorems.

One major advantage of restricting attention to Polish spaces is that it

is not necessary to appeal to the axiom of choice. Instead, we proceed by

induction, using the axiom of dependent choice; we make an infinite sequence

of decisions, each possibly dependent on what has gone before.

In analysis, there are a few fundamental results which require the axiom of

choice. The first is Tychonoff’s theorem, which states that an arbitrary product

of compact topological spaces, with the product topology, is compact. We do

not prove this, or use it. On the other hand, we do prove, and use, the fact that

a countable product of compact metrizable spaces is compact and metrizable.

Secondly, there are two fundamental results of linear analysis which need

the axiom of choice, using Zorn’s lemma. The first of these is the Hahn–Banach

theorem (together with the separation theorem). Using induction, we prove

weak forms of these, for separable normed spaces; this is sufficient for our

purposes.

But for completeness’ sake we also give the classical results, using Zorn’s

lemma; Here we first prove the separation theorem, showing that it essentially

depends upon the connectedness of the unit circle T, and then derive the Hahn–

Banach theorem from it.

The other fundamental result which requires the axiom of choice is the

Krein–Mil’man theorem, which states that every weakly compact convex

subset K has an extreme point. Again, we only need, and use, the result in

the case where K is metrizable, and we prove this without the axiom of choice.

The fact that we avoid using the axiom of choice suggests that the proofs

should, in some sense, be less abstract and more constructive. Unfortunately,

this is not the case; the arguments that are used are frequently indirect

(consider the collection of all sets with a particular property), so that for

example a typical Borel subset of a Polish space does not have a simple

description.

Let us now describe the contents of the three parts of this book in more

detail.
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Introduction 3

Part I: Topological Properties

Although it is assumed that the reader has some knowledge of general topology

and metric spaces, the first two chapters give an account of these topics,

including Tietze’s extension theorem, Baire’s category theorem and Lipschitz

functions.

This leads to the notion of a Polish space, a separable topological space

whose topology is given by a complete metric. A fundamental example is given

by a compact metrizable space, and Alexandroff’s theorem is used to show that

a topological space is a Polish space if and only if it is homeomorphic to a Gδ

subspace of a compact metric space, and in particular homeomorphic to a Gδ

subspace of the Hilbert cube.

We shall need to consider suprema of sets of real-valued continuous

functions. Such functions are lower semi-continuous, and we consider such

functions in Chapter 4. A lower semi-continuous function on a compact space

attains its infimum, but this is not necessarily true for lower semi-continuous

functions on a complete metric space. We establish its replacement, Ekeland’s

variational principle, together with two of its corollaries, the petal theorem and

Daneš’s drop theorem, and various other applications.

Metric spaces have more structure than a topological one, and Chapter 5

contains an account of uniform spaces; uniformity is particularly important

when we consider locally compact topological groups, in Part II.

Chapter 6 is devoted to showing that the space of càdlàg functions is a

Polish space under the Skorohod topology; many stochastic processes, and

their underlying measures, lie on such spaces, and this helps justify the claim

that almost all probability measures of interest lie on Polish spaces. Further

examples are given by separable Banach spaces and Hilbert spaces; these are

principally used to introduce the notion of convexity.

The rest of Part I is concerned with convexity. The Hahn–Banach theorem

is one of the key results here, and we give proofs of appropriate results, both

without and with the axiom of choice. For us, the Hahn–Banach theorem is

essentially a geometric theorem showing that two suitable convex sets can be

separated by a hyperplane. It also leads onto the notion of weak topology.

The Legendre transform provides an important duality theory for convex

functions, and this leads naturally to the concept of subdifferentials and

subdifferentiability. We prove the Bishop–Phelps theorem, and also introduce

the notion of cyclic monotonicity.

The rest of Part I is concerned with convex sets which are compact and

metrizable in some suitable topology. We prove versions of the Krein–Mil’man

theorem, Krein’s theorem and a swathe of fixed point theorems, many of which

are used later.
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4 Introduction

Part II: Measures on Polish Spaces

We expect that the reader has some knowledge of abstract measure theory, but

Chapter 14 contains a survey of the basic results. Chapter 15 contains some fur-

ther results: we introduce the Banach space M(X) of finite measures on a Polish

space X, its subspaces L1(μ) and Orlicz spaces (with the use of Legendre

duality). We give von Neumann’s Hilbert space proof of the Radon–Nikodym

property and a proof of the strong law of large numbers (to be used later).

In Chapter 16, we investigate Borel measures on Polish spaces. We prove

regularity and tightness properties; we may not know what a typical Borel set

looks like, but we can approximate the Borel measure of a Borel set from the

outside by open sets, and on the inside by compact sets. This leads to Lusin’s

theorem, which says that if μ is a Borel measure on a Polish space X then a

Borel measurable function on X is continuous on a large compact subset.

So far, all is theory, and no measures, other than trivial ones, have been

shown to exist. We remedy this by showing how to construct Borel measures on

the Bernoulli space �(N), and then, pushing forward, constructing measures

on compact metric spaces and Polish spaces. We prove the Riesz represen-

tation theorem, and use this to give a measure-theoretic proof of the Stone–

Weierstrass theorem.

We then show how Borel measures can be disintegrated, and establish the

existence of Haar measure on compact and locally compact Polish spaces;

we follow an account by Pedersen to show that this last result is relatively

straightforward.

In Chapter 17, we come down to earth and consider Borel measures on

Euclidean space, where the point at issue is the differentiation of measures

and of Borel measurable functions. We establish Lebesgue’s differentiation

theorem and Rademacher’s theorem on the differentiability almost everywhere

of Lipschitz functions.

We now proceed to study one of the key points of this chapter, namely, the

weak convergence of measures. We show that there are various metrics which

define the weak topology w, and show that although the unit ball M1(X) is

generally not metrizable, the space of probability measures P(X) is a Polish

space. Examples of weak convergence include the central limit theorem and the

empirical law of large numbers. Finally, uniform integrability is investigated.

Part II ends with an introduction to Choquet theory on a metrizable compact

convex set. The theory is notoriously difficult for general weakly compact

convex sets, but the difficulties disappear in the metrizable case.

Parts I and II contain more than two hundred exercises. These are usually

very straightforward, but most are an essential part of the text; do them.
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Introduction 5

Part III: Introduction to Optimal Transportation

The setting is this; μ and ν are Borel probability measures on Polish spaces X

and Y , and c is a lower semi-continuous cost function on X × Y . We consider

two problems. Kantorovich’s problem is to find a measure π on X × Y with

marginals μ and ν with minimal cost
∫

X×Y
c dπ . Monge’s problem is a special

case of this; find a measurable mapping T : X → Y which pushes forward

μ to ν with minimal cost
∫

X
c(x, T(x)) dμ(x). The results of Parts I and II are

used, or modified, to tackle these problems. For example we can push forward

μ and ν to measures on metrizable compactifications. We also consider the

concepts of c-cyclic monotonicity and c-concavity. It is quite easy to show

that Kantorovich’s problem has a solution, but with more care we introduce a

‘maximal Kantorovich potential’, which with its c-transform can give a great

deal of information.

When X = Y and c = dp, where d is a metric on X, we introduce

and investigate the Wasserstein metric Wp, which is the minimal cost of

transforming μ into ν. Similarly, we introduce the Mallows distance, which

does the same for distributions of random variables. As an example, we prove

a metric version of the central limit theorem.

In the last chapter, we consider special cases. For example, we consider the

case when X = Y = R, and the case where the cost is a quadratic function on a

separable Hilbert space. Finally, following Gangbo and McCann [GMcC], we

consider the cases when the cost on Rd is given by a strictly convex or strictly

concave function.

This only scratches the surface: for more, see the two large volumes by

Villani, [V I] and [V II].

Although I have checked the proofs carefully, no doubt errors remain. Please

consult my home page at www.dpmms.cam.ac.uk where a list of comments

and corrections will be found, together with my email address, to which

corrections should be sent.
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