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1 Introduction

One buzzword that has gained in popularity since the beginning of this century is “data

science.” What data science actually is, however, is a matter of debate (see, e.g., [8]). It

can be argued that, since its objectives are to collect, analyze, and extract information

from data, data science is ultimately a revamping of “statistics.” A case could also be

made for adding “signal processing” to the picture since, according to IEEE (the flagship

society for the field), signal processing is “the science behind our digital life.” As such,

the very broad scientific coverage of signal processing makes it difficult to delineate for

it a clear borderline with data science, which itself appears as one of the items listed by

IEEE.

Whatever the terminology, the “data science/signal processing” main issue can be

summarized as follows:

Starting from some data (be they human-made or given by nature), the objective is

to extract from them some information, assumed to exist and considered of interest.

Remark. The question of what is “of interest” or not makes the end user enter the pro-

cess. A common distinction is made in signal processing between “signal” and “noise”

(we will come back to this in Chapter 3), but it must be understood that this has only a

relative meaning. For instance, in the case of the famous cocktail-party problem, which

can be formulated in terms of source separation, it is clear that, when considering one

specific conversation, this one becomes a “signal” while other conversations, although

they are of the very same nature, are “noise.” In a nutshell, signals to some are noise to

others. Another example is given by the so-called Cosmic Microwave Background that

can be seen as either a perturbation for communications (this was even the way it was

discovered by Arno Penzias and Robert W. Wilson in 1965) or a scientific object per se,

the analysis of which gives invaluable information about the early universe [9].

The process of extracting information from data encompasses many facets that may

include acquisition, transformation, visualization, modeling, estimation, or classifica-

tion. Signal processing (or data analysis) has therefore something to do with three main

domains, namely physics, mathematics, and informatics. First, physics, which has to be

understood at large, i.e., as in direct connection with the physical world where data live

and/or are originated from (from this point of view, this also includes biological or even
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2 Introduction

symbolic data). Then, mathematics (including statistics), which permits us to formalize

transforms and manipulations of data, as well as assessing the performance of analysis

and processing methods. And finally, informatics, which helps dealing with digitized

data and turns processing methods into algorithms.

Remark. Signal processing is interdisciplinary by nature, making more difficult to appre-

ciate its specificity when referring to classical categorizations of science (in the spirit

of, say, Auguste Comte). Indeed, it took a while for it to be recognized as a discipline of

its own. In its early days, i.e., during World War II and right after, signal processing was

not necessarily named as such and was mostly considered through its applied and/or

technological aspects, despite theoretical breakthroughs such as Norbert Wiener’s “yel-

low peril” seminal book, which first took the form of a classified report in 1942 and

was eventually published as a book in 1949 [10]. Though still facing practical problems

(raised in particular by the U.S. Navy and the French Navy about background noise in

underwater acoustics), several efforts were then pursued for giving signal processing

solid grounds by bridging physics and mathematics. One landmark book in this respect

is Théorie des Fonctions Aléatoires (i.e., Theory of Random Functions) by André Blanc-

Lapierre and Robert Fortet [11]. This pioneering book established the field and launched

a successful French school that later, in 1967, organized the first ever Groupe d’Etudes

du Traitement du Signal (GRETSI) conference – the first one of the series of GRETSI

symposia that are still run every two years – that was specifically dedicated to signal

processing. This was followed about 10 years later by IEEE, which held its first Interna-

tional Conference on Acoustics, Speech and Signal Processing, or ICASSP, conference

in 1976. Roughly speaking, considering countless conferences, books, and periodicals

that are now flourishing, one can say that signal processing emerged as a recognized

field during the 1970s.

In short, signal processing exists at the intersection of different fields, reducing to

none of them but gaining from their confrontation an intrinsic value that goes beyond

a simple addition of each. In “complex systems” terminology, we would say that “the

whole is more than the sum of the parts” and, as illustrated in Figure 1.1:

We claim that the success of a signal processing/data analysis method, as well as

its acceptance by the scientific community, is based on a well-balanced importance

of the three components of the “golden triangle” whose vertices are physics (data),

mathematics (formalizations and proofs), and informatics (algorithms).

Remark. A companion interpretation of a similar “golden triangle” can be given by

attaching to the bottom-right vertex the possibilities offered by informatics in terms of

simulation. In such a case, the balance is among classical experiments rooted in physics,

models expressed in mathematical terms, and numerical data generated by model-based

equations governed by physics.

Let us support our claim about the “golden triangle” of Figure 1.1 by considering two

examples that are closely related to the purpose of this book and to the methods that will

be considered (we will later discuss some counterexamples).
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Figure 1.1 The “golden triangle.” This symbolic representation states that signal processing (or

data analysis) is based on interactions among three basic components rooted in the more classical

fields of physics (data), mathematics (formalizations and proofs), and informatics (algorithms).

Example 1 – Fourier. Let us start with the first success story, namely Fourier analysis,

which is of considerable importance in signal processing. The starting point is clearly

physics, since the purpose of Joseph Fourier’s seminal work (completed in 1811, yet

published only in 1822 [12]) was to answer the question, raised by the French Academy

of Sciences, of establishing an analytic theory of heat. To this end, Fourier developed

a mathematical technique of expansions based on sines and cosines that is commonly

used today (Fourier series and integrals), and launched the whole field of harmonic

analysis, which experienced tremendous developments during the nineteenth and twen-

tieth centuries. Because of its potential in many applications, it soon became natural to

look for “implementations” of Fourier analysis, leading to the invention of mechanical,

optical, acoustical, and electrical devices [13]. Following the electronic revolution and

the advent of computers, however, the true breakthrough came from algorithmics with

the publication of the Fast Fourier Transform by James Cooley and John Tukey in

1965 [14]. Besides physics (with an unlimited range of applications to all kinds of data)

and mathematics, this was the third key ingredient that really boosted Fourier analysis

and made it enter the toolkit of every scientist. Incidentally, it is worth remarking that

this point of view, which considers the three mentioned aspects altogether, was already

at the heart of Fourier’s program, as attested by two quotes [15] excerpted1 from his

Théorie Analytique de la Chaleur [12]. The first one is quite famous and states that

“The deep study of nature is the most fruitful source of mathematical discoveries.”

The second one is less known, but nonetheless visionary, since it reads: “This difficult

research required a special analysis, based on new theorems [. . . ]. The proposed method

ends up with nothing vague and undetermined in its solutions; it drives them to their

ultimate numerical applications, a condition which is necessary for any research, and

without which we would only obtain useless transformations.” Nothing to add: physics,

mathematics, numerics – all three are equally necessary in Fourier’s words.

1 The translation from French to English is mine.
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4 Introduction

Example 2 – Wavelets. The second example is quite similar to Fourier analysis, and it

is in some sense one of its avatars. As for Fourier and heat theory, wavelet theory also

originated from a physics problem, namely the question of vibroseismics in geophysics.

The technique, used for oil exploration, basically amounts to sending mechanical vibra-

tions of increasing frequency into the ground from the surface and analyzing the return-

ing echoes to produce information about the underlying geological structure. Because

of the nonstationary nature of the excitation, Jean Morlet, a French engineer working

for the Elf-Aquitaine group, was keen to use a time-frequency analysis, but he realized

that the standard way, namely the Gabor expansion, had some shortcomings. Some of

them were of a computational nature (typically, unstable reconstructions) and other ones

came from physical considerations. Morlet’s major objection to Gabor analysis was that

it is based on a window of fixed duration, whatever the analyzed frequency. This means

that, when analyzing “high” frequencies, the window may contain many oscillations,

whereas when going down to “low” frequencies, the same window may contain only

a fraction of one oscillation, questioning the concept of frequency itself. This echoes a

remark of Norbert Wiener in his autobiography Ex-Prodigy: My Childhood and Youth

[16]: “A fast jig on the lowest register of the organ is in fact not so much bad music as

no music at all.”

This physical observation prompted Morlet to look for a better mathematical

decomposition, and his proposal was to forget about a duration-invariant window with a

variable number of oscillations, preferring a shape-invariant waveform made of a

few oscillations (hence the name “wavelet”), whose duration would be locked to the

(inverse) analyzed frequency. This seemingly simple idea was first developed with Alex

Grossmann from a mathematical physics point of view [17]. Soon after, it became a

major topic in mathematics thanks to the pioneering works of Yves Meyer [18], Ingrid

Daubechies [19], and Stéphane Mallat [20] (to name but a few), who put theory on firm

and elegant grounds. As for Fourier and the Fast Fourier Transform (FFT), the impact

of wavelets has been leveraged when wedding mathematics with electrical engineering,

recognizing that wavelet bases can be given a filter bank interpretation, and that wavelet

transforms can be equipped with fast and efficient algorithms [20]. Again, starting from

physics and getting a proper mathematical formalization, closing the “golden triangle”

with computational efficiency was instrumental in adopting and spreading wavelets in

almost every domain of science and technology.

Coming back to data science in general, a current trend is to think “big.” Indeed, we

are now overwhelmed by a deluge of data that may take a myriad of forms and dimen-

sionalities, be they multivariate, multimodal, hyperspectral, non-euclidian, or whatever.

This has created a move of data analysis from classical signal processing or time series

analysis toward new avenues that are paved with buzzwords such as data mining, large-

scale optimization, or machine learning (preferably “deep”). Of course, the point is

not to question those approaches that led to tremendous success stories. It is rather to

consider that there still remains some room for a more “entomological” study of the fine

structure of modest size waveforms, calling in turn for some “surgical” exploration of

the methods dedicated to their analysis. This is what this book is about.
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Introduction 5

In this era of “big data,” we propose to think about signals another way, to think

“small”!

To achieve this program, a specific perspective will be adopted, namely that of

describing signals jointly in time and frequency; this is similar to the method of analysis

used in the wavelet technique mentioned previously, but is not restricted to only this type

of analysis. It is well known that a signal most often takes the form of a “time series,”

i.e., a succession of values that reflect the temporal evolution of some quantity. This

may concern speech, music, heartbeats, earthquakes, or whatever we can imagine as the

output of some sensor. Most data often involve rhythms, cycles, and oscillations; it is

also well known that there exists a powerful mathematical tool, the Fourier transform,

that allows for a complementary description of the very same data in a dual, frequency-

based domain. This yields a different yet equivalent representation, and we can go back

and forth from one to the other without losing any information. However, what each

of those representations tells us about some data is not only of a different nature but

also orthogonal in the sense that they are exclusive of each other: a frequency spectrum

just ignores time, mirroring the “natural” representation in time that makes no direct

reference to a frequency content.

As powerful as it has proven to be from a mathematical point of view, this alternative

contrasts with our everyday experience, which seems to indicate that time and frequency

should be able to interact and exchange information; after all, whistling does seem to

make frequency vary with time. While this is an idea that nobody really has a problem

with, it is something that a strict Fourier representation cannot easily handle. The classic

analogy that is used when speaking of overcoming this Fourier limitation is often that

of a musical score, i.e., a symbolic representation that makes use of two dimensions for

writing down a musical piece: time on the one hand for the occurrence and duration

of different notes, and frequency on the other hand for their pitch. It should be noted,

however, that a musical score is a prescription for what a signal (the musical piece when

actually played) should be.

Time-frequency analysis goes somehow the other way, its very purpose being the

writing of the musical score, given a recording.

There is unfortunately no unique and completely satisfactory way of achieving this

program, but there are a number of methods whose detailed study permits a meaningful

characterization of signals that reconciles mathematical description and physical intu-

ition, hopefully closing the “golden triangle” with efficient algorithms. This is also what

this book is about.

One more word. This book is not intended to be a comprehensive treatise of time-

frequency analysis that would cover all aspects of the field (this can be found elsewhere;

see, e.g., [21], [22], [7], or [23], to name but a few). It must rather be seen as an explo-

ration, a journey in which stops are made when needed for addressing specific issues.

The construction is in no way axiomatic or linear. What is privileged is interpretation,

at the expense of full proofs and, sometimes, full rigor.
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6 Introduction

Roadmap. The book is organized as follows. Following this Introduction, Part I is

devoted to “Basics and Constraints,” i.e., to a general presentation of the fundamental

problems and tools that motivate the use of a time-frequency analysis. This begins in

Chapter 2 with a discussion of specific signals (encountered in physics, bioacoustics, or

mathematics) that are in some sense emblematic of a need for time-frequency analysis

and that will be considered again at the end of the book. Chapter 3 then discusses notions

of noise, in contrast with what is expected from signals as more structured objects.

The Fourier description of signals in time or frequency is addressed in Chapter 4,

with special emphasis on Gaussian waveforms for the pivotal role they play in many

questions of time-frequency analysis. This is in particular the case for the uncertainty

relations that put a limit on joint localization, and that are exposed under different

forms in Chapter 5. Based on the previous considerations, Chapter 6 enters the core

of the subject, introducing in a mostly interpretative way basic time and frequency

representations and distributions. This offers the possibility of revisiting uncertainty in

Chapter 7, from a completely time-frequency-oriented perspective. Finally, Chapter 8

discusses the key concept of (non-)stationarity, with a revisiting of time-frequency that

allows for an operational definition.

Part II of this book is concerned with a more detailed exploration of the structure of

time-frequency distributions in terms of “Geometry and Statistics.” Chapter 9 focuses on

the geometry of the spectrogram and its interpretation. This leads on to a discussion in

Chapter 10 of a number of variations aimed at sharpening a spectrogram, based on ideas

of reassignment, synchrosqueezing, or sparsity. Such approaches are indeed reminiscent

of alternative techniques related to the so-called Hilbert–Huang Transform, which this

book digresses to examine in Chapter 11. Chapter 12 comes back to the mainstream

of the book, with a deeper interpretation of the spectrogram geometry in the Gaussian

case, deriving spatial organizations in the plane from the structure of the reassignment

vector field. Whereas the underlying construction rules apply equally to any waveform,

the noise case is more specifically addressed in Chapter 13, with uncertainty revisited

in terms of statistical correlation. This is detailed further in Chapter 14, which proposes

a simple (randomized lattice) model for the distribution of local maxima considered as

a 2D point process. Similar considerations are followed in Chapter 15 for zeros, in con-

nection with the theory of Gaussian Analytic Functions. The importance of spectrogram

zeros is stressed by the proposal of a zeros-based algorithm for time-frequency filtering,

as well as by “universal” properties attached to such characteristic points. With all the

techniques discussed so far at our disposal, Chapter 16 comes back to the examples of

Chapter 2, elaborating on their possible time-frequency analyses and on the information

that can be gained from them.

Finally, a short Conclusion is followed by a series of commented-upon links to free

software tools permitting actual implementation of most of the techniques discussed in

the book.
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