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1 Fundamental Mathematics of
Nonlinear-Emission Photonic
Glass Fiber and Waveguide Devices

1.1 Introduction

In the design and analysis of nonlinear-emission photonic glass fiber and waveguide

devices, one of the most important aspects is to solve the multi-variable rate equation

and power-propagation equation groups. In many cases, the equation groups are non-

linear. Currently, there is no commercial software that can be directly used to solve

multi-variable nonlinear equation groups. The methods introduced in this chapter

include the Newton iteration algorithm and Runge–Kutta algorithm for the initial-

value problem and the algorithm for the two-point boundary problem, which are

effective numerical techniques for highly doped and co-doped fiber amplifiers and fiber

laser systems as well as photonic glass waveguide systems for spectral conversion and

white-light generation.

1.2 Newton Iteration Algorithm for Nonlinear Rate Equation Solution

1.2.1 Single-Variable [1]

A nonlinear equation group can be linearized into a linear equation group. At each

iteration step, a new linear equation group can be obtained and solved, this method is

called linearization method. For example, for a two-dimensional nonlinear population

rate equation group:

dN1

dt
¼ aN3

1 þ bN1N2 þ cN2
2 þ d

dN2

dt
¼ �aN3

1 � bN1N2 � cN2
2 � d;

N1 þ N2 ¼ N

ð1:1Þ

where N1 and N2 are the population numbers at the lower level and upper level of a two-

level laser system with ion–ion nonlinear interaction, respectively. In steady condition,

dN1/dt = dN2/dt = 0, the equation group is nonlinear, its solution has no analytical

form. Let us consider the solution of N1. Equation (1.1) is simplified as Equation (1.2),

where x represents N1:

f xð Þ ¼ 0 (1.2)
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If x* is the true root of Equation (1.2) and x0 is an approximation of x*, then the linear

function through the point x0; f x0ð Þð Þis:

L xð Þ ¼ a0 x� x0ð Þ þ f x0ð Þ (1.3)

where a0 ¼ f
0

x0ð Þ 6¼ 0. If L xð Þ � f xð Þ, then the root of Equation (1.2) can be approxi-

mately replaced with the root of L xð Þ ¼ 0, and the new approximate root x1 is:

x1 ¼ x0 �
1

a0
f x0ð Þ (1.4)

The linear function through the point x1; f x1ð Þð Þ is:

L xð Þ ¼ a1 x� x1ð Þ þ f x1ð Þ (1.5)

If L xð Þ � f xð Þ, then the root of Equation (1.1) can be approximately replaced with the

root of L xð Þ ¼ 0, and the new approximate root x2 is:

x2 ¼ x1 �
1

a1
f x1ð Þ (1.6)

where a1 ¼ f
0

x1ð Þ 6¼ 0. Generally:

xkþ1 ¼ xk �
1

ak
f xkð Þ, ak 6¼ 0, k ¼ 0, 1, . . . (1.7)

where ak ¼ f
0

xkð Þ 6¼ 0.

Iteration Equation (1.7) is a linearization method for solving Equation (1.2); its

geometric idea is to plot a line through the point xk; f xkð Þð Þ, and the crossing point of

the line with the x-axis is considered the new approximation of the root of Equation

(1.2), as shown in Figure 1.1.

Actually, with different ak, a different iteration method can be obtained. The method

with a ¼ f
0

x0ð Þ is called the Newton iteration algorithm. If we plot a tangent of y ¼ f xð Þ

at the point xk; f xkð Þð Þ and let xkþ1 be a root of L xð Þ ¼ f
0

xkð Þ x� xkð Þ þ f xkð Þ ¼ 0, then:

xkþ1 ¼ xk �
f xkð Þ

f
0
xkð Þ

, k ¼ 0, 1, 2, . . . (1.8)

When k is sufficiently large, the root xkþ1 will approach the true root x
∗ of Equation (1.2).

Figure 1.1 Finding procedure of root of nonlinear equation using linearization method.
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1.2.2 Multi-Variable

For the equation with n variables x1, x2, . . . , xn:

f x1; x2; . . . ; xnð Þ ¼ 0 (1.9)

the solution of the single-variable Equation (1.2) can be used to solve the n-variable

equation. It is assumed that x∗1 ; x
∗

2 ; . . . ; x
∗

n

� �

are the true roots of Equation (1.9), and

x10; x20; . . . ; xn0ð Þ are approximations of the true roots x∗1 ; x
∗

2 ; . . . ; x
∗

n

� �

. For simplifica-

tion, let us use X to represent the n-dimensional variables x1; x2; . . . ; xnð Þ, and use X0 to

represent x10; x20; . . . ; xn0ð Þ and Xk to represent x1k; x2k; . . . ; xnkð Þ. The linear function

through X0; f X0ð Þð Þ is:

Lk Xð Þ ¼ Ak X � Xkð Þ þ f Xkð Þ (1.10)

where Ak is an n-order nonsingular matrix; if Lk Xkð Þ � f Xkð Þ, one can use the solution

of linear equation group (Equation 1.10) as the approximation of the true root of

Equation (1.9).

Let:

Lk Xð Þ ¼ Ak X � Xkð Þ þ f Xkð Þ ¼ 0 (1.11)

Then X ¼ Xkþ1 is a new approximation of the true root of Equation (1.9), that is:

Xkþ1 ¼ Xk �
f Xkð Þ

Ak

, k ¼ 0, 1, 2, . . . (1.12)

This procedure becomes linear iteration method of the nonlinear equation group

f Xð Þ ¼ 0. Generally, a different iteration method with different Ak is used. The Newton

iteration method uses A0 ¼ f
0

X0ð Þ, Ak ¼ f
0

Xkð Þ and for f Xð Þ ¼ 0:

Xkþ1 ¼ Xk �
f Xkð Þ

f
0
Xkð Þ

, k ¼ 0, 1, 2, . . . (1.13)

This method is a simplified Newton method.

Figure 1.2 Finding procedure of root of multi-variable nonlinear equation using Newton iteration

method.
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1.3 Runge–Kutta Algorithm for Power-Propagation Equation Solution

1.3.1 Single-Function [2]

The Runge–Kutta algorithm is used to numerically solve differential equations. It is

known to be very accurate for a wide range of problems. Consider a single-variable

problem:

dy

dx
¼ f x; yð Þ, a � x � b

y að Þ ¼ y0

(1.14)

with initial condition y að Þ ¼ y0, and suppose that yn is the value of function at the

variable xn. The Runge–Kutta formula takes yn and xn to calculate an approximation of

ynþ1 at xnþh by using a weighted average of approximate values of f x; yð Þ within the

interval (xn, xnþh).

y xð Þ can be expanded using Taylor series:

y xð Þ ¼ y x0ð Þ þ x� x0ð Þy
0

x0ð Þ þ
x� x0ð Þ2

2
y
00

x0ð Þ þ
x� x0ð Þ3

6
y
000

x0ð Þ þ . . . (1.15)

where y
0
xð Þ ¼ dy=dx, y

00
xð Þ ¼ d2y=dx2, y

000
xð Þ ¼ d3y=dx3.

Equation (1.14) is inserted into Equation (1.15) and Equation (1.16) is obtained:

y xð Þ � y x0ð Þ þ x� x0ð Þy
0

x0ð Þ ¼ y x0ð Þ þ x� x0ð Þ f x0; y0ð Þ (1.16)

The numerical approximation of Equation (1.16) is:

y1 ¼ y0 þ hf x0; y0ð Þ (1.17)

where h ¼ x1 � x0 is a step length, y2 ¼ y1 þ hf x1; y1ð Þ, and generally:

yk ¼ yk�1 þ hf xk�1; yk�1ð Þ (1.18)

Thus, yk can be obtained from y0 and f x0; y0ð Þ, and this method is called the Euler

method.

According to the mean value theorem of differentials:

y xkþ1ð Þ � y xkð Þ ¼ y
0

ξð Þ xkþ1 � xkð Þ (1.19)

Equation (1.20) can be obtained from Equation (1.18):

y xkþ1ð Þ ¼ y xkð Þ þ hf ξ; y ξð Þð Þ (1.20)

where h ¼ xkþ1 � xk, f ξ; y ξð Þð Þ ¼ S∗ is the mean slope of y xð Þ in the range xk; xkþ1½ �.

If f xk; y xkð Þð Þ � f xk; ykð Þ ¼ S1 is an approximation of S∗, then ykþ1 ¼ yk þ hS1, and

this is the first-order Euler equation.

Assume that f xkþ1; y xkþ1ð Þð Þ � f xk þ h; yk þ hf xk; ykð Þð Þ ¼ S2, and the weighted

average values of S1 and S2 are used as the approximation of S*, then:
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ykþ1 ¼ yk þ
1

2
h S1 þ S2ð Þ,

S1 ¼ f xk; ykð Þ,

S2 ¼ f xk þ h; yk þ hS1ð Þ

ð1:21Þ

This is the second-order Euler equation.

Generally, if there are m slope values, such as S1, S2, S3, . . . , Sm in the range

xk; xkþ1½ �, then:

ykþ1 ¼ yk þ h α1S1 þ α2S2 þ . . .þ αmSmð Þ,

S1 ¼ f xk; ykð Þ,

S2 ¼ f xk þ β2h; yk þ γ2hð Þ

. . .

Sm ¼ f xk þ βmh; yk þ γmhð Þ

(1.22)

This is a general form of the Runge–Kutta algorithm.

Where 0 � λk � 1, yk þ γkh is an approximate value of y xk þ βmhð Þ, and αk, βk, γk are

undetermined coefficients.

For the third-order Runge–Kutta algorithm:

ykþ1 ¼ yk þ
1

6
S1 þ 4S2 þ S3ð Þh

S1 ¼ f xk; ykð Þ

S2 ¼ f xk þ
1

2
h; yk þ

1

2
S1h

� �

S3 ¼ f xk þ h; yk � S1hþ 2S2hð Þ

(1.23)

For the fourth-order Runge–Kutta algorithm:

ykþ1 ¼ yk þ
1

6
S1 þ 2S2 þ 2S3 þ S4ð Þh

S1 ¼ f xk; ykð Þ

S2 ¼ f xk þ
1

2
h; yk þ

1

2
S1h

� �

S3 ¼ f xk þ
1

2
h; yk þ

1

2
S2h

� �

S4 ¼ f xk þ h; yk þ S3hð Þ

(1.24)

To run the simulation, it can be started with y0, and y1 can be found using the above

formula, then y1 is plugged in to find y2, and so on.

To solve the power-propagation equations of rare-earth-doped fiber and waveguide

systems, y represents pump power, signal power, or amplified spontaneous emission

power, and x represents the propagation distance z.

51.3 Runge–Kutta Algorithm for Power-Propagation Equation Solution
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1.3.2 Multi-Functions

With multiple functions, the Runge–Kutta algorithm is similar to the above equations,

except that the functions become a vector.

Suppose there are m functions y1, y2, . . . , ym, each of which varies with same

variable x. Suppose further that there are m coupled differential equations for these

m functions:

dy1

dx
¼ f 1 x; y1; y2; . . . ; ymð Þ

dy2

dx
¼ f 2 x; y1; y2; . . . ; ymð Þ

. . . . . . . . . . . . . . . . . . . . .

dym

dx
¼ f n x; y1; y2; . . . ; ymð Þ

ð1:25Þ

Note there are no derivatives on the right-hand side of those equations, and there are

only first derivatives on the left-hand side. These equations can be summarized in vector

form as:

dY

dx
¼ F x; Yð Þ (1.26)

where Y ¼ y1; y2; . . . ; ymð Þ. Next, let us label the states ym, ymþ1, which are separated by

the interval h of variable x. That is, ym is the value of the function at the variable xm, and

y1m is the value of the first function y1 at xm:

Ym ¼ ðy1,m, y2,m, . . . , ym,mÞ (1.27)

Ymþ1 ¼ ðy1,mþ1; y2,mþ1 . . . , ym,mþ1Þ (1.28)

To compute the state at a short length h and put the results into xm+1, the fourth-order

Runge–Kutta algorithm does the following [2]:

Ymþ1 ¼ Ym þ
h

6
S1,m þ 2S2,m þ 2S3,m þ S4,mð Þ (1.29)

where:

S1,m ¼ F xm; Ymð Þ,

S2,m ¼ F xm þ
h

2
; Ym þ

h

2
am

� �

,

S3,m ¼ F xm þ
h

2
; Ym þ

h

2
bm

� �

,

S4,m ¼ F xm þ h; Ym þ hcmð Þ

The new vector Ym+1 gives the values after variable x has passed the small length h.
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To solve power-propagation equations of rare-earth-co-doped fiber and waveguide

systems, Y represents pump power, signal power, and amplified spontaneous emission

power and x represents propagation distance z.

Matlab codes of the Newton iteration method and Runge–Kutta algorithm are

attached in the Appendix.

1.4 Two-Point Boundary Problem for Power-Propagation Equations
in a Laser Cavity

1.4.1 Principle [3]

In solid and fiber lasers, the pump power, lasing power, and amplified spontaneous

emission power-propagation equations form a coupled differential equation group. The

pump powers at the two ends of the laser cavity are known and the lasing power at the

output end is unknown; thus, this problem is a standard two-point boundary problem.

We need to solve a set of m coupled first-order differential equations, meeting m1

boundary conditions at starting point z1, and another set of m2 ¼ m� m1 boundary

conditions at the final point z2. The differential equation group can be written as follows:

dy1

dz
¼ f 1 z; y1; y2; . . . ; ymð Þ

dy2

dz
¼ f 2 z; y1; y2; . . . ; ymð Þ

. . . . . . . . . . . . . . . . . . . . .

dym

dz
¼ f m z; y1; y2; . . . ; ymð Þ

ð1:30Þ

At z1, the solution is supposed to meet:

B1i z1; y1; y2; . . . ; ymð Þ ¼ a1, a2, . . . , am1, i ¼ 1, . . . ,m1 (1.31)

At z2, the solution is supposed to meet:

B2j z2; y1; y2; . . . ; ymð Þ ¼ b1, b2, . . . , bm2, j ¼ 1, . . . ,m2 (1.32)

1.4.2 Shooting Method and Relaxation Method [3]

Shooting and relaxation methods are usually used to solve the two-point boundary

problem. One of methods for two-point boundary problem solution is the method which

is used to solve numerically the differential equation of initial value problem and the

nonlinear algebraic equation. This method is called shooting method. In the shooting

method, we can choose values for all dependent variables at one boundary; these values

must be consistent with any boundary conditions. The ordinary differential equations

are solved by integrating and arriving at the other boundary by using the initial-value

method. In general, the difference from the desired boundary value can be found, then

we meet a multidimensional root-finding problem, which can be solved by using the

71.4 Two-Point Boundary Problem for Power-Propagation Equations in a Laser Cavity
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Newton iteration algorithm introduced in the previous section: the variables are adjusted

at a boundary point to reduce the difference at the other boundary points. If the

differential equations are integrated to follow the trajectory of a shot from gun to a

target, then picking the initial conditions corresponds to aiming in Figure 1.3. The

shooting algorithm provides a systematic approach to taking a set of ranging shots that

allow us to improve our aim systematically.

Figure 1.3 Schematic diagram of shooting algorithm for solving m coupled differential equa-

tions. Trial integration meeting the boundary condition at one endpoint is started. The

difference from the desired boundary condition at the final endpoint is used to adjust the

starting conditions, until the boundary conditions at the two endpoints are finally met.

Figure 1.4 Schematic diagram of relaxation algorithm for solving m coupled differential equations.

A set of initial values is guessed that meets the differential equations and boundary conditions.

An iteration process is used to adjust the function to make it close the true solution.
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The relaxation algorithm uses a differential approach. The differential equations become

finite-difference equations on a mesh of points that covers the range of the integration.

A trial solution consists of values for the dependent variable at eachmesh point, notmeeting

the desired finite-difference equations, nor necessarily evenmeeting the required boundary

conditions. The iteration, which is called relaxation, consists of adjusting all values on the

mesh in order to bring them into closer agreement with the finite-difference equations and

simultaneously with the boundary conditions shown in Figure 1.4. In Matlab, the function

bvp4c( ) usually is used to solve the two-point boundary problem described with the

equations (1.30)-(1.32). It is assumed that S(z) is an approximate solution of the equations

(1.30)-(1.32) and is a continuous function and cubic polynomial at each subrange [zn,zn+1]

in the range 0=z0<z1<z2<. . .<zn=L, and meet the boundary condition:

B S 0ð Þ; S Lð Þð Þ ¼ 0;

and at end of each subrange, the below differential equations are met:

S
0

znð Þ ¼ f zn;S znð Þð Þ,

S
0

zn þ znþ1ð Þ=2Þ ¼ f zn þ znþ1ð Þ=2ð Þ, S zn þ znþ1ð Þ=2ÞÞ,

S
0

znþ1ð Þ ¼ f znþ1; S znþ1ð Þð Þ:

The residual error of the ordinary differential equation is expressed with

r zð Þ ¼ S
0

zð Þ � f z; S zð Þð Þ

Various high-order differential equations can be converted to the first-order differential

equations by variable conversion, which can be solved with the function bvp4c( ).

If the true solutions of differential equations are smooth and not highly oscillatory,

then the relaxation method works best. If the true solutions are highly oscillatory, the

shooting method usually is more efficient because its variable step size of integration

can adjust naturally.

Matlab codes of the two-point boundary problem for solid laser and fiber laser are

attached in the Appendix.
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