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1 Nanoplasmonics

This introductory chapter deals with basic, general and important notions in nanoplasmon-

ics that will be useful before entering the field of thermoplasmonics. The aim is to provide

the reader with simple ideas and mathematical expressions that can be used to explain and

understand the plasmonic response of metal nanoparticles.

The first section introduces the physics of the localized plasmon resonance for a dipolar

spherical metal nanoparticle, for which closed-form expressions of the optical response

exist. The section also describes what happens when enlarging the size of the nanoparticle

or breaking its spherical symmetry. The second section explains why gold nanoparticles

have been preferred in plasmonics compared with nanoparticles made of other materials.

This second section also takes the opportunity to discuss a very recent branch of nanoplas-

monics aiming to try and find alternative plasmonic materials. Finally, a third section

introduces the field of thermoplasmonics by answering common experimental questions.

1.1 Localized Plasmon Resonance

1.1.1 Definitions

A localized plasmon (LP) is a normal mode of collective oscillation of the free electrons

contained in a metal nanoparticle. A LP resonance can be excited using light when the

electric field of the incoming light oscillates at a frequency close to the plasmon eigen

frequency [49].

What I call a localized plasmon (LP) in this book is often coined localized surface plas-

mon (LSP) in the literature. I prefer to remove the word “surface” for the following reason.

Apart from LP, there exist bulk plasmons (BP) and surface plasmons (SP). With a bulk

plasmon, the excitation occurs in a metal extending over the three dimensions of space

(3D). With a SP, the electronic oscillation occurs at the interface between a metal and a

dielectric extending over two dimensions of space (2D). With a LP, the oscillation occurs

in a space that is confined in all dimensions of space (0D). While “bulk” means 3D, “sur-

face” means 2D, I find it appropriate to use the adjective “localized” to signify 0D, and not

“localized surface.”

In this book, I distinguish between the fields of plasmonics and nanoplasmonics. While

plasmonics encompasses the physics of LPs and SPs, nanoplasmonics rather focuses on

LPs; hence the title of this chapter.
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2 Nanoplasmonics

In a striking coincidence, noble metal nanoparticles feature LP resonances in the UV–

visible–NIR range, just like many aromatic compounds, although a metal nanoparticle has

nothing to do with an organic molecule. This coincidence of Nature is responsible for the

burgeoning activity of nanoplasmonics. Basically, due to this coincidence, metal nanoparti-

cles can be advantageously put in standard optical microscopes with common light sources

and detectors.

In the following sections, I will introduce basic notions of LP resonance starting from

scratch and complicating the concepts step by step. I will successively discuss:

• the response of a metal sphere to a static electric field;

• the LP response of a dipolar sphere to a time-harmonic electric field;

• the LP response of large spheres and retardation effects;

• the LP response of particles of arbitrary morphology;

• the influence of the surrounding medium.

1.1.2 Dipolar Metal Nanoparticle

As usual in physics, the case of a sphere is simple and very instructive (see Figure 1.1). To

introduce the physics of LP resonance, let us consider a metal sphere of radius a standing in

a surrounding medium of refractive index ns = √
εs, along with a monochromatic incident

illumination characterized by the electric field1

E0(r, t) = Re
(

E0(r) e−iωt
)

, (1.1)

an angular frequency ω and a wavelength in vacuum λ = 2πc/ω. For a linearly polarized

plane wave illumination, one has

E0(r) = û E0 ei k·r (1.2)

where û is the unit vector along the direction of the light polarization, and k = 2πns/λ is

the norm of the wave vector k. In the presence of the nanoparticle, the electric field at any

location r reads

E(r, t) = Re
(

E(r) e−iωt
)

. (1.3)

Static Electric Field

Let us first consider a static applied electric field (ω → 0). The effect of the electric

field is to displace the electrons from equilibrium, creating charge accumulation on the

boundaries of the nanoparticle, as represented in Figure 1.2a. The magnitude of this charge

displacement can be described by the dipolar moment p of the nanoparticle. p is collinear

with the applied electric field and reads

p = ε0αE0. (1.4)

1 In this chapter, underlined letters mean complex number quantities defined in the harmonic regime at the

angular frequency ω; boldface letters correspond to vectors.
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3 1.1 Localized Plasmon Resonance

�Fig. 1.1 Spatial description of the system under study: a spherical metal nanoparticle of relative permittivity ε in a dielectric

medium of relative permittivity εs = n
2
s .

�Fig. 1.2 (a) Representation of a spherical metal nanoparticle immersed in a static and uniform electric field. (b) Map of the

normalized electric field intensity in the case of a metal sphere in vacuum.

α represents the polarizability of the nanoparticle and scales as a volume. For a metal

sphere in a static electric field, one has

α = 4πεsa
3 (1.5)

α = 3Vεs (1.6)

where V = 4πa3/3 is the volume of the particle.

In such a simple problem, the electric potential surrounding the sphere reads in spherical

coordinates [31]

φ(r, θ ) = E0

(

r − a3

r2

)

cos θ . (1.7)

Using this expression of φ, the electric field can be calculated anywhere in the surround-

ings. In particular, one can show that it features a maximum value on the outer boundary

of the sphere that is three times as big as the applied electric field intensity

Emax = 3 E0 (1.8)

This figure is independent of ns and independent of the sphere radius. The total electric

near-field intensity is thus nine times as big as the applied electric field intensity. Figure 1.2b

plots the normalized electric field intensity |E/E0|2 calculated around a metal nanoparticle

immersed in a static electric field, where a maximum value of 9 is evidenced at the vicinity
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4 Nanoplasmonics

of the nanoparticle, in the direction of the polarization of E0. The interest of discussing the

static case is the following: strong enhancement of the electric near-field is a distinctive

feature of metal particles. It occurs even out of the plasmonic resonance, like here in the

static case. The effect of a plasmonic resonance will be to drive the near-field enhancement

above this threshold value of 9.

In the static case, within the nanoparticle the electric field is rigorously zero, since it

is cancelled out by the surface charges accumulated on its boundaries. But this feature no

longer holds with non-static electric fields (see next subsection).

The charge separation depicted in Figure 1.2a is responsible for a restoring force within

the nanoparticle that tends to move the charges back to their original stable configuration.

As in many cases in physics, such a restoring force can be at the origin of a resonance effect

(a LP resonance in our case), if the system is excited at the proper frequency. The excitation

of a metal sphere with a time-harmonic electric field (i.e., light) and the occurrence of a LP

resonance is the purpose of the next subsection.

Time-Harmonic Electric Field (i.e., Light)

The occurrence of a LP resonance of the electronic gas at a given angular frequency ω

stems from the restoring force acting between the positive and negative charges facing at

each sides of the nanoparticle. For noble metal nanoparticles, such a resonance lies around

optical frequencies (ω ∼ 2π×1014 Hz). In this section we will only consider the quasistatic

approximation, which assumes that the phase of the electric field oscillation is uniform in

the nanoparticle, which amounts to neglecting retardation effects. This assumption is valid

for nanoparticles much smaller than the wavelength (ka < 1). Within this approximation,

one can consider the nanoparticle as a pure dipole (no multipolar term of the charge distri-

bution) and simple closed-form expressions can be derived. In particular, the polarizability

of a sphere with an electric permittivity ε(ω) reads [31, 55]

α = 3 V εs
ε(ω) − εs

ε(ω) + 2εs
. (1.9)

One can also define the enhancement factor ξ

ξ = ε(ω) − εs

ε(ω) + 2εs
(1.10)

which plays an important role in the physics of LP resonance. It represents the charge

oscillation in the nanosphere in amplitude and phase. This is represented in Figure 1.3.

The amplitude |ξ | equals 1 at low frequency (large wavelength) and features a reso-

nance when the denominator of ξ reaches a minimum for a given angular frequency ω,

i.e., when Re(ε) ≈ −2εs (see Figure 1.3a). This situation is possible with metals, since

they feature a negative value of the real part of their permittivity. Note that |ξ | does not

diverge at the resonance due to the remaining imaginary part of ε in the denominator when

Re(ε) = −2εs.
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5 1.1 Localized Plasmon Resonance
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�Fig. 1.3 (a) Real part of the permittivity of gold. The resonance wavelength (530 nm) of a dipolar gold sphere in water is

indicated by a vertical dashed line. (b) Imaginary part of the permittivity of gold. (c) Norm of the enhancement factor

ξ . (d) Argument of the enhancement factor ξ .

The static problem described in the previous section corresponded to |ε| → ∞, i.e.,

ξ = 1. This is why ξ → 1 at large wavelength.

In general, the response of a resonator (like a spring-mass system) is universal. In partic-

ular, the phase delay at resonance is π/2 and the amplitude of the response vanishes at high

excitation frequencies. This is not the case for a plasmon resonance. Figure 1.3c shows the

response of a gold nanosphere (solid lines) compared to the response of a regular resonator

(dashed lines). The plasmon resonance amplitude goes back to unity at high frequencies

(small wavelengths), not to zero. This is due to the presence of another type of electron in

the nanoparticles, which can be optically excited at higher photon energy (below λ = 500

nm) and which are mobile enough to screen the incoming field. These are the d-electrons

of the metals as explained in the next section. The response of the nanoparticle when these

d-electrons are not present is schematized by a dashed line in Figure 1.3c, which represents

the response of a conventional resonator.

A similar unusual resonance behavior is observed in Figure 1.3d. The phase of the oscil-

lation saturates at high frequencies (small wavelengths), whereas it normally approaches

π for a normal resonance. The phase of the electronic oscillation at resonance is also not
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6 Nanoplasmonics

conventional. Instead of the usual π/2 delay in a resonance process, one has a reduced

phase shift (see Figure 1.3d). For a gold nanosphere it is close to π/4, but this is a coinci-

dence. Once again, this is due to the presence of mobile d-electrons that can be excited only

with high photon energies. The phase response of the nanoparticle when these d-electrons

are not present is schematized by a dashed line in Figure 1.3d.

The maximum amplitude of the electric field on the outer boundary of the sphere, which

used to equal 3E0 in the static case, now reads

Emax = (1 + 2 ξ ) E0. (1.11)

Developing this expression highlights two terms: E0, which is the incoming electric field,

and 2 ξ E0, which is the near-field created by the charges of the nanoparticle, which super-

imposes constructively with the incoming field to yield a field enhancement. This term

further evidences that ξ represents the electronic oscillation.

Another interesting quantity is the electric field observed inside the nanoparticle. While

it was cancelled out by the charge accumulation in the static case, there is a nonzero electric

field inside the nanoparticle, especially under plasmonic resonance. For a dipolar sphere,

the inner electric field is uniform and equals

Ein = (1 − ξ ) E0. (1.12)

Again, developing this expression highlights two terms: E0, which is the incoming electric

field, and −ξ E0, which is the screening field created by the charges of the nanoparticle,

which superimposes destructively with the incoming field. From Equations (1.11) and (1.12),

one can derive two useful parameters that quantify the enhancement of the electric field

intensity outside and inside the nanoparticle [39]:

ηout = |1 + 2ξ |2 = 9

∣

∣

∣

∣
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2

(1.13)

ηin = |1 − ξ |2 = 9

∣

∣

∣

∣

1
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∣

2

. (1.14)

The η values are important, first because they report on how a metal nanoparticle acts

on the electric field, and then because they stand for universal dimensionless constants

for a given metal, if considered at the plasmon resonance frequency (ηres = η(λres)). For

gold, one gets ηout = 19 and ηin = 0.86 when excited in vacuum at λ = 526 nm. Figure

1.4 plots the corresponding map of the electric field intensity. A maximum value of 19 is

indeed observed on the outer boundary of the gold sphere. This map has to be compared

with Figure 1.2b representing the map of the electric near-field in the static case, where a

near-field enhancement of only 9 was obtained.

1.1.3 Band Energy Diagram of Metals

The excitation of d electrons is not beneficial in plasmonics as it increases loss (see the

increase of Im(ε) in Figure 1.3b). This is why metals with fully occupied d-bands are pre-

ferred. Fully occupied bands necessarily lie below the Fermi level and can be optically

excited only above a given photon energy. Figure 1.5a explains this effect by sketching the
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7 1.1 Localized Plasmon Resonance

�Fig. 1.4 Calculation of the normalized electric field intensity around a gold nanosphere in vacuum illuminated at its plasmon

resonance frequencyλ = 526 nm.
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�Fig. 1.5 (a) Schematic band energy diagram of metals of the 11th column of the Mendeleev’s table, characterized by a fully

occupied d-band. d electrons can be optically excited via an interband transition only above a certain photon energy

threshold. (b) Schematic band energy diagram of metals featuring a partially occupied d-band, such as iron, copper,

and nickel. d electrons can be excited by any photon energy.

band energy diagram of the family of elements corresponding to the 11th column of the

Mendeleev’s table, that is copper, silver and gold. d-bands of these materials are fully

occupied, their electronic configurations being 4s13d10, 5s14d10 and 6s15d10 respectively.

For metals with a partially occupied d-band, d-electrons can be excited for any photon

energy, which creates additional non-radiative interaction and energy loss, detrimental in

plasmonics (see Figure 1.5b).

1.1.4 Optical Cross Sections

The polarizability α and the enhancement factor ξ of a nanoparticle are valuable param-

eters, since they render the nanoparticle response. However, they are usually not the

parameters of interest in plasmonics. One usually prefers to deal with optical cross sec-

tions. The optical cross sections of a nanoparticle are directly related to the polarizability,
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8 Nanoplasmonics

but they are more useful since they can be used to estimate scattered or absorbed energies

just from the knowledge of the light irradiance I (power per unit area). The absorption and

scattering cross sections are defined such that the powers absorbed and scattered by the

nanoparticle under plane wave illumination read:

Pabs = σabs I (1.15)

Psca = σsca I. (1.16)

We also define the extinction cross section as the sum of the two above-mentioned cross

sections:

σext = σabs + σsca. (1.17)

Absorption cross sections can be defined for any particle interacting with light. For a

dipolar sphere, they can be simply expressed as functions of the polarizability α [53]:

σsca = k4

6π
|α|2 (1.18)

σext = k Im(α) (1.19)

σabs = σext − σsca. (1.20)

Figure 1.6 plots the extinction, absorption and scattering cross sections of a gold nanopar-

ticle, 50 nm in diameter, in water. The line shapes are very similar to those of ξ (see

Figure 1.3c), featuring a resonance around the same wavelength. However, the cross sections

vanish at large wavelengths due to the factor k in their expressions.

For small spheres (typically smaller than 40 nm in diameter), σabs � σsca and one can

assume that σabs ≈ σext = k Im(α). Still in this approximation, and using Equation (1.10),

one can write the absorption cross sections as functions of the enhancement factor ξ .

σsca ≈ 8π

3
k4ε2

s |ξ |2a6 (1.21)

�Fig. 1.6 Extinction, scattering and absorption cross sections of a 50 nm gold nanosphere in water.
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9 1.1 Localized Plasmon Resonance

�Fig. 1.7 Absorption cross section of a spherical gold nanoparticle in water as a function of its diameter (solid line) for an

illumination wavelength of 532 nm. Fitting function for small diameter (dashed line). Reproduced with permission

from Reference [52]. Copyright 2015, American Chemical Society.

σabs ≈ 4πεsIm(ξ )a3. (1.22)

As a consequence, the absorption cross section of small spherical nanoparticles scales

with the nanoparticle volume (a3). This rule is valid for nanoparticles smaller than typically

60 nm, as observed in Figure 1.7. In this range of size, one can thus define a constant factor

ζ such that the absorption cross section of a gold nanosphere reads

σabs = ζa3, (1.23)

The use of this number avoids the need to conduct numerical simulations. For instance, for

a gold nanosphere in water illuminated at 532 nm [52]:

ζ = 0.430 nm−1. (1.24)

1.1.5 Influence of the Particle Size: Retardation Effects

When increasing the size of a particle, the first trend will naturally be an increase of both

the absorption and scattering cross sections. Interestingly, while absorption is dominant for

small particles, scattering becomes more significant upon increasing the size of a particle

since it scales as a6, while absorption scales as a3. For spherical gold particles in water,

this transition occurs for a diameter 2a = 88 nm, as represented in Figure 1.8a. For 2a = 88

nm, the scattering and absorption cross section maxima are equal, as represented in Figure

1.8b. Note the small shift between the resonances in absorption and scattering. As a rule of

thumb in plasmonics, the resonance wavelength in scattering does not necessarily match

the one in absorption.

Another effect observed in larger particles is the red shift of the plasmonic resonance (see

Figure 1.8c). This effect comes from the fact that the particle can no longer be considered as

a point-like oscillating dipole. In the previous section, we considered that all the charges in

the nanoparticle along with the inner electric field were uniformly oscillating in phase. This
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10 Nanoplasmonics

a b c

�Fig. 1.8 Scattering and absorption cross sections of a gold sphere in vacuum calculated using Mie theory. (a) Plots of the cross

sections as functions of the nanoparticle diameter, calculated at the resonance wavelengthλres(a). (b) Plots as a

function of the wavelength for a nanoparticle diameter 2a = 88 nm. (c) Resonance wavelengthλres(2a).

is the so-called quasistatic approximation. If the metal sphere is enlarged, such an ideal

case no longer holds. First, if the particle size becomes of the order of the incoming wave-

length, the exciting electric field E0 may be different in phase from one location to another,

which will create some nonuniformities of the charge oscillation within the particle. But a

finite wavelength λ is not what primarily invalidates the quasistatic approximation. Indeed,

there is another typical length in this problem, the so-called plasmon wavelength, which is

shorter than the incoming light wavelength. For gold, it is around 50 nm. If the particle is

larger than this dimension, some retardation effects occur due to the electromagnetic inter-

action between distant charges within the particle. For this reason, for gold, the quasistatic

approximation no longer applies for particles larger than typically 40–60 nm. Figure 1.8c

plots the resonance wavelengths in absorption and scattering of spherical gold nanopar-

ticles as functions of their radius, evidencing a rule of thumb in plasmonics: enlarging a

nanoparticle red-shifts the plasmon resonance.

There is no simple analytical expression of the response of a metal sphere of arbi-

trary size. However, simple numerical simulations can be carried out using Mie theory,

as described in Section 3.1, on page 81.

1.1.6 Influence of the Particle Morphology

We have seen that enlarging a particle could shift the plasmon resonance to the red, but

it is not the most efficient strategy for playing with the resonance wavelength. With gold

one can hardly shift the resonance above 600 nm, and the size of the nanoparticle cannot

be arbitrarily increased for some applications, in particular for biomedical applications.

The other strategy consists in deviating from a spherical shape. At least three categories of

shape modification can be used to substantially red-shift the resonance:

• The most common approach to shift the resonance is to modify the aspect ratio of the

nanoparticles [32], using rods or discs for instance, illuminated with a polarization along

their longer dimension. Figure 1.9 plots absorption cross sections of a dipolar gold sphere
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