
Cambridge University Press
978-1-108-41736-5 — Notes on Counting: An Introduction to Enumerative Combinatorics
Peter J. Cameron 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Notes on Counting: An Introduction to

Enumerative Combinatorics

Enumerative combinatorics, in its algebraic and analytic forms, is vital to many

areas of mathematics, from model theory to statistical mechanics. This book, which

stems from many years’ experience of teaching, invites students into the subject and

prepares them for more advanced texts. It is suitable as a class text or for individual

study.

The author provides proofs for many of the theorems to show the range of

techniques available and uses examples to link enumerative combinatorics to other

areas of study. The main section of the book introduces the key tools of the subject

(generating functions and recurrence relations), which are then used to study the most

important combinatorial objects, namely subsets, partitions, and permutations of a

set. Later chapters deal with more specialised topics, including permanents, SDRs,

group actions and the Redfield–Pólya theory of cycle indices, Möbius inversion, the

Tutte polynomial, and species.
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Preface

Combinatorics is the science of pattern and arrangement. A typical problem in

combinatorics asks whether it is possible to arrange a collection of objects accord-

ing to certain rules. If the arrangement is possible, the next question is a counting

question: how many different arrangements are there? This is the topic of the

present book.

Often a small change in the detail of a problem turns an easy question into

one which appears impossibly difficult. For example, consider the following three

questions.

• In how many ways can the numbers 1, . . . ,n be placed in the cells of an n×n

grid, with no restriction on how many times each is used? Since each of the

n2 cells can have its entry chosen independently from a set of n possibilities,

the answer is nn2
.

• In how many ways can the arrangement be made if each number must occur

once in each row? Once we notice that each row must be a permutation of

the numbers 1, . . . ,n, and that the permutations can be chosen independently,

we see that the answer is (n!)n (as there are n! permutations of the numbers

1, . . . ,n).

• In how many ways can the arrangement be made if each number must oc-

cur once in each row and once in each column? For this problem, there is

no formula for the answer. Such an arrangement is called a Latin square.

The number of Latin squares with n up to 11 has been found by brute-force

calculation. For larger values, we don’t even have good estimates: the best

known upper and lower bounds differ by a factor which is exponentially

large in terms of the number of cells.

Not all problems are as hard as this. In this book you will learn how to count

ix
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x Preface

the number of permutations which move every symbol, strings of zeros and ones

containing no occurrence of a fixed substring, invertible matrices of given size over

a finite field, expressions for a given positive integer as a sum of positive integers

(the answers are different depending on whether we care about the order of the

summands or not), trees and graphs on a given set of vertices, and many more.

Very often I will not be content with giving you one proof of a theorem. I may

return to an earlier result armed with a new technique and give a totally differ-

ent proof. We learn something from having several proofs of the same result. As

Michael Atiyah said in an interview in the Newsletter of the European Mathemat-

ical Society,

I think it is said that Gauss had ten different proofs for the law of

quadratic reciprocity. Any good theorem should have several proofs,

the more the better. For two reasons: usually, different proofs have

different strengths and weaknesses, and they generalise in different

directions — they are not just repetitions of each other.

In particular, there are two quite different styles of proof for results in enumer-

ative combinatorics. Consider a result which asserts that two counting functions

F(n) and G(n) are equal. We might prove this by showing that their generating

functions are equal, perhaps using analytic techniques of some kind. Alternatively,

we might prove the result by finding a bijection between the sets of objects counted

by F(n) and G(n). Often, when such an identity is proved by analytic methods,

the author will ask for a ‘bijective proof’ of the result.

As an example, if n is even, then it is fairly straightforward to prove by analytic

methods that the number of permutations of {1, . . . ,n} with all cycles even is equal

to the number with all cycles odd. But finding an explicit bijection between the

two sets is not straightforward, though not too difficult.

I should stress, though, that the book is not full of big theorems. Tim Gowers, in

a perceptive article on ‘The two cultures of mathematics’, distinguishes branches

of mathematics in which theorems are all-important from those where the empha-

sis is on techniques; enumerative combinatorics falls on the side of techniques. (In

the past this has led to some disparagement of combinatorics by other mathemati-

cians. Many people know that Henry Whitehead said ‘Combinatorics is the slums

of topology’. A more honest appraisal is that the techniques of combinatorics

pervade all of mathematics, even the most theorem-rich parts.)

The notes which became this book were for a course on Enumerative and

Asymptotic Combinatorics at Queen Mary, University of London, in the spring

of 2003, and subsequently as Advanced Combinatorics at the University of St

Andrews. The reference material for the subject has been greatly expanded by

the publication of Richard Stanley’s two-volume work on Enumerative Combina-

torics, as well as the book on Analytic Combinatorics by Flajolet and Sedgewick.

(References to these and many other books can be found in the bibliography at the
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Preface xi

end.) Many of these books are encyclopaedic in nature. I hope that this book will

be an introduction to the subject, which will encourage you to look further and to

tackle some of the weightier tomes.

What do you need to know to read this book? It will probably help to have had

some exposure to basic topics in undergraduate mathematics.

• Real and complex analysis (limits, convergence, power series, Cauchy’s the-

orem, singularities of complex functions);

• Abstract algebra (groups and rings, group actions);

• Combinatorics.

None of this is essential; in most cases you can pick up the needed material as you

go along.

The heart of the book is Chapters 2–4, in which the most important tools of the

subject (generating functions and recurrence relations) are introduced and used to

study the most important combinatorial objects (subsets, partitions and permuta-

tions of a set). The basic object here is a formal power series, a single object

encapsulating an infinite sequence of numbers, on which a wide variety of manip-

ulations can be done: formal power series are introduced in Chapter 2.

Later chapters treat more specialised topics: permanents, systems of distinct

representatives, and Latin squares in Chapter 5, ‘q-analogues’ (familiar formu-

lae with an extra parameter arising in a wide variety of applications) in Chap-

ter 6, group actions and the Redfield–Pólya theory of the cycle index in Chapter 7,

Möbius inversion (a wide generalisation of the Inclusion–Exclusion Principle) in

Chapter 8, the Tutte polynomial (a counting tool related to Inclusion–Exclusion)

in Chapter 9, species (an abstract formalism including many important count-

ing problems) in Chapter 10, and some miscellaneous topics (mostly analytic)

in Chapters 11 and 12. The final chapter includes an annotated list of books for

further study.

As always in a combinatorics book, the techniques described have unexpected

applications, and it is worth looking through the index. Cayley’s Theorem on

trees, for example, appears in Chapter 10, where several different proofs are given;

Young tableaux are discussed in Chapter 4, as are various counts of inverse semi-

groups of partial permutations.

The final chapter includes an annotated book list and a discussion of using the

On-line Encyclopedia of Integer Sequences.

The first few chapters contain various interdependences. For example, bino-

mial coefficients and the Binomial Theorem for natural number exponents appear

in Chapter 2, although they are discussed in more detail in Chapter 3. Such occur-

rences will be flagged, but I hope that you will have met these topics in undergrad-

uate courses or will be prepared to take them on trust when they first appear.

I am grateful to many students who have taken this course (especially Pablo

Spiga, Thomas Evans, and Wilf Wilson), to colleagues who have helped teach
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xii Preface

it (especially Thomas Müller), and to others who have provided me with exam-

ples (especially Thomas Prellberg and Dudley Stark), and to Abdullahi Umar for

the material on inverse semigroups. I am also grateful to Morteza Mohammed-

Noori, who used my course notes for a course of his own in Tehran, and did a

very thorough proof-reading job, spotting many misprints. (Of course, I may have

introduced further misprints in the rewriting!)

The book will be supported by a web page at

http://www-circa.mcs.st-and.ac.uk/~pjc/books/counting/

which will have a list of misprints, further material, links, and possibly solutions

to some of the exercises.
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