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CHAPTER 1

Introduction

This book is about counting. Of course this doesn’t mean just counting a single

finite set. Usually, we have a family of finite sets indexed by a natural number n,

and we want to find F(n), the cardinality of the nth set in the family. For example,

we might want to count the subsets or permutations of a set of size n, lattice paths

of length n, words of length n in the alphabet {0,1} with no two consecutive 1s,

and so on.

1.1 What is counting?

There are several kinds of answer to this question:

• An explicit formula (which may be more or less complicated, and in partic-

ular may involve a number of summations). In general, we regard a simple

formula as preferable; replacing a formula with two summations by one with

only one is usually a good thing.

• A recurrence relation expressing F(n) in terms of n and the values of F(m)
for m< n.This allows us to compute F(0),F(1), . . . in turn, up to any desired

value.

• A closed form for a generating function for F . We will have much more

to say about generating functions later on. Roughly speaking, a generat-

ing function represents a sequence of numbers by a power series, which in

some cases converges to an analytic function in some domain in the com-

plex plane. An explicit formula for the generating function for a sequence of

numbers is regarded as almost as good as a formula for the numbers them-

selves.
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2 Introduction

If a generating function converges, it is possible to find the coefficients by

analytic methods (differentiation or contour integration).

In the examples below, we use two forms of generating function for a se-

quence (a0,a1,a2, . . .) of natural numbers: the ordinary generating function,

given by

∑
n≥0

anxn,

and the exponential generating function, given by

∑
n≥0

anxn

n!
.

We will study these further in the next chapter, and meet them many times

during later chapters. In Chapter 10, we will see a sort of explanation of

why some problems need one kind of generating function and some need

the other.

• An asymptotic estimate for F(n) is a function G(n), typically expressed in

terms of the standard functions of analysis, such that F(n)− G(n) is of

smaller order of magnitude than G(n). (If G(n) does not vanish, we can

write this as F(n)/G(n)→ 1 as n → ∞.) We write F(n)∼ G(n) if this holds.

This might be accompanied by an asymptotic estimate for F(n)−G(n), and

so on; we obtain an asymptotic series for F . (The basics of asymptotic anal-

ysis are described further in the next section of this chapter.)

• Related to counting combinatorial objects is the question of generating them.

The first thing we might ask for is a system of sequential generation, where

we can produce an ordered list of the objects. Again there are two possibili-

ties.

If the number of objects is F(n), then we can in principle arrange the objects

in a list, numbered 0,1, . . . ,F(n)−1; we might ask for a construction which,

given i with 0 ≤ i ≤ F(n)− 1, produces the ith object on the list directly,

without having to store the entire list and count through from the start.

Alternatively, we may simply require a method of moving from each object

to the next.

• We could also ask for a method for random generation of an object. If we

have a technique for generating the ith object directly, we simply choose a

random number in the range {0, . . . ,F(n)−1} and generate the correspond-

ing object. If not, we have to rely on other methods such as Markov chains.

Here are a few examples. These will be considered in more detail in Chapter 3;

it is not necessary to read what follows here in detail, but you are advised to skim

through it.
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1.1 What is counting? 3

Example: subsets The number of subsets of {1, . . . ,n} is 2n. For each subset is

specified by saying, for each number i ∈ {1, . . . ,n}, whether i is in the subset or

not; thus n binary choices are required to specify the subset.

Not only is this a simple formula to write down; it is easy to compute as well.

It can clearly be done by starting with 1 and doubling n times (that is, n integer

additions). Alternatively, it can be computed with at most 2 log2 n integer multi-

plications. (In other words, we can choose to have fewer but more complicated

operations.)

To see this, write n in base 2: n = 2a1 + 2a2 + · · ·+ 2ar , where a1 > · · · > ar.

Now we can compute 22i
for 1 ≤ i ≤ a1 by a1 successive squarings (noting that

22i+1
=
(

22i
)2

); then 2n = (22a1 ) · · ·(22ar
) requires r−1 further multiplications.

There is a simple recurrence relation for F(n) = 2n, namely

F(0) = 1, F(n) = 2F(n−1) for n ≥ 1.

This expresses the calculation of 2n by n doublings. Another recurrence relation,

expressing the more efficient technique just outlined for computing 2n, is given by

F(0) = 1, F(n) =

{

2F(n−1) if n is odd,

F(n/2)2 if n is even.

The ordinary generating function of the sequence (2n) is

∑
n≥0

2nxn =
1

1−2x
,

while the exponential generating function is

∑
n≥0

2nxn

n!
= exp(2x).

(I will use exp(x) instead of ex in these notes, except in some places involving

calculus.)

No asymptotic estimate is needed, since we have a simple exact formula. In-

deed, it is clear that 2n is a number with ⌈n log10 2⌉ decimal digits.

Choosing a random subset, or generating all subsets in order, are easily achieved

by the following method. For each i ∈ {0, . . . ,2n −1}, write i in base 2, producing

a string of length n of zeros and ones. Now j belongs to the ith subset if and only

if the jth symbol in the string is 1.

A procedure for moving from one set to the next can be produced using the

odometer principle, based on the odometer or mileage gauge in a car. Represent

a subset as above by a string of zeros and ones. To construct the next subset in

the list, first identify the longest substring of ones at the end of the string. If the
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4 Introduction

string consists entirely of ones, then it is last in the order, and we have finished.

Otherwise, this string is preceded by a zero; change the zero to a one, and the ones

following it to zeros. For example, for n = 3, the odometer principle generates the

strings

000,001,010,011,100,101,110,111,

which correspond to the subsets

/0,{3},{2},{2,3},{1},{1,3},{1,2},{1,2,3}

of {1,2,3}.

Notice that the binary strings are in lexicographic order, the order in which they

would appear in a dictionary, regarding them as words over the alphabet {0,1}.

For 0 ≤ k ≤ n, the number of k-element subsets of {1, . . . ,n} is given by the

binomial coefficient
(

n

k

)

=
n(n−1) · · ·(n− k+1)

k(k−1) · · ·1 .

The binomial coefficients are traditionally written in a triangular array where, for

n ≥ 0, the nth row contains the numbers
(

n
0

)

,
(

n
1

)

, . . . ,
(

n
n

)

. This is usually called

Pascal’s triangle, though, as we will see, it was not invented by Pascal. It begins

like this:
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

The most important property, and the reason for the name, is the form of the

generating function for these numbers (regarded as a sequence indexed by k for

fixed n), the Binomial Theorem:

n

∑
k=0

(

n

k

)

xk = (1+ x)n.

Example: permutations A permutation of the set {1, . . . ,n} is a rearrangement

of the elements of the set, that is, a bijective function from the set to itself. The

number of permutations of {1, . . . ,n} is the factorial function n! , defined as usual

as the product of the natural numbers from 1 to n. This formula is not so satisfac-

tory, involving an n-fold product. It can be expressed in other ways, as a sum:

n! =
n

∑
k=0

(−1)n−k

(

n

k

)

(n− k)n,
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1.1 What is counting? 5

or as an integral:

n! =
∫ ∞

0
xne−x dx.

Neither of these is easier to evaluate than the original definition. (We will meet

both these formulae later on.)

The recurrence relation for F(n) = n! is

F(0) = 1, F(n) = nF(n−1) for n ≥ 1.

This leads to the same method of evaluation as we saw earlier.

The ordinary generating function for F(n) = n! fails to converge anywhere

except at the origin. The exponential generating function is 1/(1− x), convergent

for |x|< 1.

As an example to show that convergence is not necessary for a power series to

be useful, let
(

1+ ∑
n≥1

n!xn

)−1

= 1− ∑
n≥1

c(n)xn.

Then c(n) is the number of connected permutations on {1, . . . ,n}. (A permutation

π is connected if there does not exist k with 1 ≤ k ≤ n − 1 such that π maps

{1, . . . ,k} to itself.) This will be proved in the next chapter.

The approximate size of the factorial function is not obvious, as it was for

powers of 2. An asymptotic estimate for n! is given by Stirling’s formula:

n! ∼
√

2πn
(n

e

)n

.

We give the proof later.

It is possible to generate permutations sequentially, or choose a random permu-

tation, by a method similar to that for subsets, using a variable base.

The set of permutations of {1, . . . ,n} forms a group under the operation of

composition, the symmetric group of degree n, denoted by Sn.

Example: derangements A derangement is a permutation with no fixed points.

Let d(n) be the number of derangements of n.

There is a simple formula for d(n): it is the nearest integer to n!/e. (This is

one of the oldest formulae in combinatorics, having been proved by de Montmort

in 1713.) This is also satisfactory as an asymptotic expression for d(n); we can

supplement it with the fact that |d(n)−n!/e|< 1/(n+1) for n > 0.

This formula is not very good for calculation, since it requires accurate knowl-

edge of e and operations of real (rather than integer) arithmetic. There are, how-

ever, two recurrence relations for d(n); the second, especially, leads to efficient

calculation:

d(0) = 1, d(1) = 0, d(n) = (n−1)(d(n−1)+d(n−2)) for n ≥ 2;

d(0) = 1, d(n) = nd(n−1)+(−1)n for n ≥ 1.

www.cambridge.org/9781108417365
www.cambridge.org


Cambridge University Press
978-1-108-41736-5 — Notes on Counting: An Introduction to Enumerative Combinatorics
Peter J. Cameron 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction

The ordinary generating function for d(n) fails to converge, but the exponential

generating function is equal to exp(−x)/(1− x).
These facts will be proved in Chapter 4.

Since the probability that a random permutation is a derangement is about 1/e,

we can choose a random derangement as follows: repeatedly choose a random

permutation until a derangement is obtained. The expected number of choices

necessary is about e.

Example: partitions The partition number p(n) is the number of non-increasing

sequences of positive integers with sum n. There is no simple formula for p(n).
However, quite a bit is known about it:

• The ordinary generating function is

∑
n≥0

p(n)xn = ∏
k≥1

(1− xk)−1.

• There is a recurrence relation:

p(n) = ∑(−1)k−1 p(n− k(3k−1)/2),

where the sum is over all non-zero values of k, positive and negative, for

which n− k(3k−1)/2 ≥ 0. Thus,

p(n) = p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ · · · ,
where there are about

√

8n/3 terms in the sum.

These facts will be proved in Chapter 4.

The asymptotics of p(n) are rather complicated, and were worked out by Hardy,

Littlewood, and Rademacher:

p(n)∼ 1

4n
√

3
eπ
√

2n/3

(more precise estimates, including a convergent series representation, exist).

Example: set partitions The Bell number B(n) is the number of partitions of

the set {1, . . . ,n}. Again, no simple formula is known, and the asymptotics are

very complicated. There is a recurrence relation,

B(n) =
n

∑
k=1

(

n−1

k−1

)

B(n− k),

and the exponential generating function is

∑
B(n)xn

n!
= exp(exp(x)−1).

Based on the recurrence one can derive a sequential generation algorithm, which

calls itself recursively.
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1.2 About how many? 7

1.2 About how many?

As noted in the last section, if F and G are two functions on the natural numbers

which do not vanish, we write F ∼ G if F(n)/G(n)→ 1 as n → ∞. If F(n) is the

solution to a counting problem and G(n) is a familiar analytic function, this tells

us roughly the size of the collection we are counting. For example, we mentioned

already that the number n! of permutations of a set of size n is given approximately

by Stirling’s formula

n! ∼
√

2πn
(n

e

)n

.

Since n! is the product of n numbers each at most n, it is clear that n! ≤ nn; the

asymptotic formula gives a much more precise estimate.

In Chapter 11 we will also introduce further notation for asymptotic analysis,

and in that chapter and the next we describe a variety of techniques for proving

such estimates.

1.3 How hard is it?

A formula like 2n (the number of subsets of an n-set) can be evaluated quickly

for a given value of n. A more complicated formula with multiple sums and prod-

ucts will take longer to calculate. We could regard a formula which takes more

time to evaluate than it would take to generate all the objects and count them as

being useless in practice, even if it has theoretical value.

Traditional computational complexity theory refers to decision problems, where

the answer is just ‘yes’ or ‘no’ (for example, ‘Does this graph have a Hamiltonian

circuit?’). The size of an instance of a problem is measured by the number of bits

of data required to specify the problem (for example, n(n− 1)/2 bits to specify

a graph on n vertices). Then the time complexity of a problem is the function f ,

where f (n) is the maximum number of steps required by a Turing machine to com-

pute the answer for an instance of size n. (A Turing machine is a simple theoretical

model of a computer which is capable of any theoretically-possible computation.)

To allow for variations in the format of the input data and in the exact specifi-

cation of a Turing machine, complexity classes are defined with a broad brush: for

example, P (or ‘polynomial-time’) consists of all problems whose time complex-

ity is at most nc for some constant c. (For more details, see Garey and Johnson,

Computers and Intractability.)

For counting problems, the answer is a number rather than a single Boolean

value (for example, ‘How many Hamiltonian circuits does this graph have?’).

Complexity theorists have defined the complexity class #P (‘number-P’) for this

purpose.

Even this class is not really appropriate for counting problems of the type we

mostly consider. Consider, for example, the question ‘How many partitions does
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8 Introduction

an n-set have?’ The input data is the integer n, which (if written in base 2) requires

only m = ⌈1+ log2 n⌉ bits to specify. The question asks us to calculate the Bell

number B(n), which is greater than 2n−1 for n > 2, and so it takes time exponential

in m simply to write down the answer! To get round this difficulty, it is usual

to pretend that the size of the input data is actually n rather than logn. (We can

imagine that n is given by writing n consecutive 1s on the input tape of the Turing

machine, that is, by writing n as a tally rather than in base 2.)

We have seen that computing 2n (the number of subsets of an n-set) requires at

most logn integer multiplications. But the integers may have as many as n digits,

so each multiplication takes about n Turing machine steps. Similarly, the solution

to a recurrence relation can be computed in time polynomial in n, provided that

each individual computation can be.

On the other hand, a method which involves generating and testing every subset

or permutation will take exponentially long, even if the generation and testing can

be done efficiently.

A notion of complexity relevant to this situation is the polynomial delay model,

which asks that the time required to generate each object should be at most nc

for some fixed c, even if the number of objects to be generated is greater than

polynomial.

Of course, it is easy to produce combinatorial problems whose solution grows

faster than, say, the exponential of a polynomial. For example, how many inter-

secting families of subsets of an n-set are there? The total number, for n odd, lies

between 22n−1
and 22n

, so that even writing down the answer takes time exponential

in n.

We will not consider complexity questions further in this book.

1.4 Exercises

1.1 Construct a bijection between the set of all k-element subsets of {1, . . . ,n}
containing no two consecutive elements, and the set of all k-element subsets of

{1, . . . ,n− k+1}. Hence show that the number of such subsets is

(

n− k+1

k

)

.

When the UK National Lottery was introduced in 1994, the draw consisted

of choosing six distinct numbers randomly from the set {1, . . . ,49}. What is the

probability that the draw contained no two consecutive numbers?

1.2 (a) In Vancouver in 1984, I saw a Dutch pancake house advertised ‘a thou-

sand and one combinations’ of toppings. What do you deduce?

(b) More recently McDonalds offered a meal deal with a choice from eight com-

ponents of your meal, and advertised ‘40312 combinations’. What do you

deduce?
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1.4 Exercises 9

1.3 Prove the second formula for n! given in the text:

n! =
∫ ∞

0
xne−x dx.

1.4 Let f (n) be the number of partitions of an n-set into parts of size 2.

(a) Prove that

f (n) =

{

0 if n is odd;

1 ·3 ·5 · · ·(n−1) if n is even.

(b) Prove that the exponential generating function for the sequence ( f (n)) is

exp(x2).

(c) Use Stirling’s formula to prove that

f (n)∼
√

2

(

2m

e

)m

for n = 2m.

1.5 Show that it is possible to generate all subsets of {1, . . . ,n} successively in

such a way that each subset differs from its predecessor by the addition or removal

of precisely one element. (Such a sequence is known as a Gray code.)

This picture might help.

✟
✟

✟
✟✟

✟
✟

✟
✟✟

✟
✟

✟
✟✟

✟
✟

✟
✟✟

/0

{1}

{2}

{2,3}{3}

{1,2}

{1,3} {1,2,3}

Remark Gray codes are used in analog-to-digital converters. Since only one

digit changes at a time when the input varies continuously, the damage caused by

an error in reading the changing digit is minimised.

1.6 Counting can be used to prove structural results, as in the following exercise,

which proves a theorem of Mantel: A graph with n vertices and more than n2/4

edges must contain a triangle.

Consider a graph with n vertices, e edges and t triangles. Let xi be the number

of edges containing vertex i.

(a) Show by Inclusion–Exclusion that, if vertices i and j are joined, then at least

xi + x j −n triangles contain these two vertices.
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10 Introduction

(b) Hence show that

6t ≥ ∑
i

x2
i +∑

j

x2
j −2ne.

(c) Use the Cauchy–Schwarz inequality to show that

∑
i

x2
i ≥ 4e2/n.

(d) Deduce that

t ≥ 1
3
e(4e−n2)/n.

(e) Hence show that, if e > n2/4, the graph contains a triangle.

Remark The Cauchy–Schwarz inequality states that, if x1, . . . ,xn and y1, . . . ,yn

are two sequences of real numbers, then

(

n

∑
i=1

xiyi

)2

≤
(

n

∑
i=1

x2
i

)(

n

∑
i=1

y2
i

)

.

Geometrically, the norm of the vector�x = (x1, . . . ,xn) is

‖�x‖=
(

n

∑
i=1

x2
i

)1/2

.

The Cauchy–Schwarz inequality says that the inner product of two vectors �x and

�y cannot exceed in modulus the product of the norms of the vectors. Indeed, the

ratio (�x ·�y)/‖x‖ · ‖y‖ is equal to the cosine of the angle between�x and�y.

This is a remarkably useful inequality, in combinatorics as well as other branches

of mathematics.

Can you prove the inequality? [Hint: Calculate the squared norm of the vector

�x+λ�y; this is a quadratic function of λ which can never be negative.]

1.7 (a) Find an iterative method for listing the k-subsets of the natural numbers

in reverse lexicographic order (that is, ordered by the largest element, and if

largest elements are equal then by the second largest, and so on). Thus, for

k = 4, the list begins

0123,0124,0134,0234,1234,0125, . . .

Your method should give an algorithm for moving from any subset to the

next in the list.
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1.4 Exercises 11

(b) Show that, if a1 < · · · < ak, then the position of {a1, . . . ,ak} in the list is

given by
(

a1

1

)

+

(

a2

2

)

+ · · ·+
(

ak

k

)

.

Can you describe the inverse of this function, which enables us to write down

the nth subset in the list?
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