Index

Locators in **bold** refer to glossary entries
Locators in *italic* to figures/tables

- absolute humidity: 77, 240
- absorption, radiation: 57, 63
- electron transition: 60
- selective absorbers: 63
- tropics vs. polar regions: 66, 67
- vibration and rotation: 62
- absorption spectrum, visible window: 60
- accretion (riming), ice crystals: 120, 240
- accuracy, weather forecasts: 209, 212
- acid rain: 122, 224, 240
- acidification of oceans, climate change: 237
- adiabatic compression: 100
- adiabatic cooling: 92, 93, 240
- adiabatic lapse rate: 240, see also dry adiabatic lapse rate; moist adiabatic lapse rate
- adiabatic processes: 88, 240
- cloud formation: 92-94
- definition: 93
- adiabatic warming: 240
- advection: 240
- advection fog: 91, 240
- aerosols: 43, 49, 77, 79, 240
- as anchor points: 90
- impact of human activity: 235
- role in air pollution: 225
- role in cloud formation: 90
- aggregation, ice crystals: 120, 240
- air masses: 21, 240
- continental Arctic: 168
- continental polar: 167
- continental tropical: 168
- maritime polar: 168
- maritime tropical: 168
- midlatitude cyclones: 167-168
- source region: 167
- air parcels: 2, 240
- air pollution: 223, 229
- aerosols: 225
- concentration in valley bottoms: 228
- concentration under temperature inversion: 228
- dispersion: 225-226
- dispersion by wind: 225, 226
- effect of atmospheric stability: 225-226, 227
- large-scale patterns: 228
- mixed layer: 226
- mixing: 225
- topography: 228
- air temperature: 3, see also temperature
- aircraft, use in wind measurement: 13
- albedo: 58, 67, 240
- definition: 58
- polar regions: 68
- tropics vs. polar regions: 67
- typical examples: 58
- Aleutian low: 151, 240
- altocumulus: 114, 240
- altostratus: 115, 240
- altostratus: 115, 240
- Andes Mountains: 140, 181
- anemometers: 11
- aneroid barometers: 11
- angular momentum: 240
- conservation of: 192, 242
- animals, impacts of climate change: 237
- Antarctic ice sheet: 138, 157
- Antarcrica: 146
- katabatic winds: 143
- technically a desert: 151
- anticyclones: 96, 228, 241
- anticyclonic wind rotation: 136
- Archimedes’ principle: 53, 102, 103, 241
- Area Forecast Discussion, US National Weather Service: 220
- Atlantic jet stream: 151
- Atlantic storm tracks: 180
- atmosphere: xi, 42-50
- aspect: 42
- averaged: 146
- composition: 42-43
- effects of climate change: 232-233
- future evolution: 45-47
- general circulation: 145
- permanent gases: 42-43, 49
- origin and evolution: 43-45
- single-cell model of circulation: 152-154
- synoptic view: 25
- thinness of: 42, 49
- three-cell model of circulation: 154-155
- variable gases: 49
- vertical structure: 47-49
- atmospheric pressure: 6-10, 241
- adjustment to mean sea level: 24
- barometers: 8-9
- definition: 7
- measurement: 16
- pressure maps: 22, 24
- station model: 18
- units: 9
- useful numbers to remember: 10
- vertical distribution: 7-8, 47-49
- Automated Surface Observing Systems (ASOS): 15
- Automated Weather Observing Systems (AWOS): 15
- automated weather stations: 14, 15
- averaged atmosphere: 146
- precipitation: 151-152
- surface pressure: 151
- surface temperature: 146-147
- upper-level heights: 148-151
- balloons, weather, see radiosondes
- barometers: 8-9, 241
bars (pressure units) 9, 241
Beaufort wind scale 12, 241
Beijing, smog 224
Bergen school of meteorology 173–174, 183
Bergeron, Tor 119, 183
Bergeron process 119, 183, 241
Bermuda/Azores High 151, 155, 241
bio logical impacts of climate change 237
Bjerknes, Jacob 173, 183
Bjerknes, Vilhelm 183
Bjerknes model (Norwegian cyclone model) 173–174
black body 60, 61, 241
black ice 241, see also freezing rain
blizzard 122, 241
Boltzmann, Ludwig 56
boundary layer 10
buoyancy force 103, 104, 241
buoys 15, 15
carbon cycle 45, 241
carbon dioxide (CO₂) 43, 44, 241
absorption of radiation 60, 64
anual variations 43
concentration 232
increase since Industrial Revolution 43, 45, 49, 232
local variations 43
natural variability 232
pollutants 223
carbon monoxide (CO) 224
Celsius (Centigrade) temperature scale 4, 241
CFCs, see chlorofluorocarbons
chaos theory 216
Chapman reactions, ozone layer 46
charge separation, ice particles 188
chinook wind 241
Rocky Mountains 99, 140
chlorofluorocarbons (CFCs) 46, 223, 242
circulation model of atmosphere 145
impact of climate change 235
Coriolis force 154
single-cell 152–154
three-cell 154–155
cirrocumulus 114, 242
cirrostratus 115, 242
cirrus clouds 114, 118, 242
in hurricanes 200, 202
Clapeyron, Émile 80
Clausius, Rudolph 80
Clapeyron–Clapeyron formula 80, 233
climate, definition xii
climate change 66, 230, 238–239
atmosphere 232–233
effects beyond weather 237
forecasting 237–238
global wind systems 235–236
midlatitude and tropical cyclones 236–237
past and future 231–232
warming effects, see global warming
water cycle 233–235
climatology 222
cloud condensation nuclei, see aerosols
cloud-to-ground lightning 188, 189
dart leader 189
return stroke 188, 189
stepped leader 188
cloud types
altocumulus 114
altostratus 115
cirrocumulus 114
cirrostratus 115
cirrus 114, 118
cumulonimbus 109, 113, 118
cumulus 102, 113
cumulus congestus 113
fair-weather cumulus 106–109, 118
lenticular 116
mares 186, 187
nimbostratus 114
stratocumulus 116
stratus 102, 113
cold tongues 160, 161, 242
cold fronts 22, 29, 101, 242
cold pool, in thunderstorms 185
cold tongue 160, 161, 242
collision and coalescence, precipitation 118–119
collision efficiency, water droplets 118–119
comets, as source of water 44
condensation 77, 77, 80–82, 242
conditional instability 107, 109–112, 242
conduction 3, 51–52
confidence, in weather forecast 212
conservation laws, general xii, 1, 17
conservation of angular momentum 192, 242
conservation of energy (law) 1, 2, 57, 92, 242
conservation of mass (law) 6, 211, 242
conservation of momentum (law) 10, 11, 126, 242
continental Arctic (cA) air mass 167
continental climate 72
continental polar (cP) air mass 167
continental tropical (cT) air mass 168
convection 52–53, 242
cloud formation 109–112.
convection (cont.)

fair-weather cumulus
 clouds 106–109
 stable air 102–104
 stable vs. unstable air 104–105
 unstable air and thermals 104
 convective precipitation 185
 convective systems 36, 40
 converging winds 138, 139
 causing cloud formation 138, 139
 cyclone development 174
 Coriolis, Gaspard-Gustave 130
 Coriolis force 130–131, 242
 influence on circulation
 model 154
 role in formation of hurricanes 199
 coupled model of ocean and
 atmosphere 238
 cumuliform 102, 112
 cumulonimbus 109–112, 113, 118, 242
 in hurricanes 200
 lightning and thunder 188
 thunderstorms 185
 cumulus 102, 113, 242
 cumulus congestus 108, 109,
 113, 242
 cyclones 171–172, 242
 influence of jet streams 171
 satellite images 39
 triple point 178
 cyclonic systems, see low pressure
 areas
 cyclonic wind rotation 136, 137
 Dalton, John 78
 Dalton’s law 78, 95
 dart leader, cloud-to-ground
 lightning 189
 day length, summer 70
 density of atmosphere 6
 deposition, water vapor mole-
 cules 119, 243
 Descartes, René xii
 deterministic forecasts 210, 211, 243
 dew 77, 81, 243
 dew point depression 83, 243
 dew point temperature 82–83, 243
 definition 82
 as a measure of humidity 83, 87
 in meteograms 85–86
 radiosonde profiles 87
 station model 18
 in surface weather maps 83–84
 diabatic process 88
 diurnal cycle 69–70, 71, 85, 243
 land-ocean contrasts 72–73
 temperature variations 68–71
 diverging winds 138
 causing clear skies 138, 139
 cyclone development 174
 tendency to slow down 139
 Doppler radar 29, 243
 drizzle 122, 243
 dry adiabatic lapse rate 94, 95
 dryline 243
 Tornado Alley 194
 dynamic equilibrium 50, 60, 68,
 77, 243
 Earth’s orbit, effect on climate 231
 Earth’s tilt, effect on seasons 68
 El Niño/Southern Oscillation
 (ENSO) 159–165, 163, 243
 forecasting 216–218
 seasonal outlook 222
 electromagnetic waves 53, 58,
 62, 63, 245
 emission 55, 55, 243
 energy, law of conservation of 1, 2,
 57, 92, 243
 ensemble forecasting 213–216, 243
 ensemble mean vs. climatological
 mean 216
 medium-range forecast 220
 spaghetti plots 214, 215
 statistical uncertainty 213–216
 entrainment 109, 243
 in thunderstorms 185
 environmental lapse rate 94, 243
 Environmental Protection Agency
 (EPA) 229
 equator, weather patterns 34
 equatorial regions, precipitation
 151
 evaporation 77, 77, 78–79, 243
 evaporation fog 88, 91, 243
 extratropical cyclones 243, 243
 see also midlatitude cyclones
 extratropics 35, 243
 extreme heat events 233
 eye of hurricane 200, 201, 243
 eyewall of hurricane 200, 243
 Fahrenheit temperature scale
 3, 4, 245
 fair-weather cumulus
 clouds 106–109, 118
 Federal Aviation Administration 15
 feedback loops, climate 65, 231
 Ferrel cell 154, 243
 Findeisen, Walter 119
 first law of thermodynamics
 92, 93, 96
 foehn (Alps) 99, 244
 fog 82, 91, 244
 advection 91
 evaporation 88, 91
 forecasting 220
 radiation 88, 91
 force units, newtons 9
 forcings, climate change 232, 238
 forecasting 209–210, 222
 accuracy 209
 chaos theory 216–218
 climate change 237–238
 confidence 212
 decreasing accuracy 212
 deterministic 210, 211
 ensemble 213–216
 initial conditions 212
 limiting factors 212
 medium-range 220–222
 parameterization of processes 212
 preparing a forecast 219–220
 probabilistic 210
 prognostic equations 210–213
 role of human forecaster 218,
 219, 220
 seasonal outlook 222
 statistical process 218–219
 uncertainty 210
 fossil fuel use, impact on climate
 change 238
 fragmentation 244
 role in forming ice crystals 120
 freezing nucleus 244, 244
 see also ice nucleus
 freezing rain 14, 122, 244
 frontal cyclones, see midlatitude
 cyclones
frontal lifting, cloud formation 101–102
frontal regions, see fronts
frontal squall line 187, 244
fronts 244, see also cold fronts; occluded fronts; stationary fronts; warm fronts
frost 81
Fujita, Tetsuya 192
Fujita scale, tornadoes 192, 244
funnel cloud 192, 244
funnel rain gauges 13
general circulation 145, 244
Geostationary Operational Environmental Satellite system (GOES) 30, 34, 244
geostationary satellites 30, 33–35, 244
geostrophic approximation 134
giostrophic balance 132–136, 244
giostrophic wind 131–134
glaciated clouds 118
global satellite images 34, 36
global warming 45, 66, 230, 233, 244, see also climate change
effect of hydrofluorocarbons 47
extreme heat events 233
forecasting 216–217
impact on daily weather 233
impact on global wind systems 233
positive feedback loop 65
predicted global temperature increase 233
since Industrial Revolution 232
to-date global temperature increase 233
water vapor feedback 65, 234
global wind systems 145, 165–166
effect of climate change 233, 235–236
pole-to-equator temperature difference 236
gradient, temperature 21
gradient wind 134–135
gradient wind balance 134, 244
graupel 120, 244
greenhouse effect 45, 61, 65, 244
feedback 65, 231
greenhouse gases 66
beneficial for life 66
impact on climate change 238
increase since Industrial Revolution 66, 232
pollutants 223
variation in concentration 66
Greenland, katabatic winds 143
gust front, thunderstorms 185, 244
Hadley, George 152
Hadley cells 152, 154, 244
impact of climate change 235
hail 13, 122, 244
hale 245
halo 115, 124, 245
haze 245
heat 2–3, 245
heat capacity 72, 245
heat imbalance 51, 66–68
heat transfer 51, 73–74
conduction 3, 51–52, 242
convection 52–53, 242
radiation 53, 66–73, 248
radiative interactions 55
hectopascals (pressure units) 9, 78, 245
hemispheric map 219, 219
heterogeneous nucleation 90, 245
HFCs, see hydrofluorocarbons
high pressure areas 22, 23,
see also anticyclones
ridges 23, 25
subtropical 151, 249
highs and lows, wind rotation rule 137
Himalayas 140, 159
homogeneous nucleation 79, 245
cloud formation 90
ice crystal formation 119
hook echo, tornadoes 195
humidity 77–78, 79–80
measurement 77, 83, 87
Hurricane Fred 204
Hurricane Katrina 201, 202, 203
Hurricane Mitch 207
hurricanes 197–199, 207, 245
comparison with midlatitude cyclones 199, 204, 206
comparison with thunderstorms 204
conditions for development 207
damage caused by 206
defay 206–207
definition 197
development 204–207
effect of El Niño 164
eye 200, 201, 243
eyewall 200, 243
geochemical distribution 199
Atlantic 151
jet stream (cont.)
caused by temperature gradients 150
influence on cyclone structure 171
Pacific 151
polar 151
role in forecasting 216
subtropical 151
katabatic winds 143, 246
three-cell model of circulation 157, 157
Kelvin temperature scale 4, 246
Keyser, Daniel 172
kinetic energy 2, 51, 246
Kirchhoff, Gustav 56
Kirchhoff’s law 56, 57, 61
knots (wind speed units) 12, 246
La Niña 163, 246
land breeze 128–130, 246
land–ocean contrasts, diurnal cycle 72–73
landfall, hurricanes 206
lapse rate 48, 49, 246, see also dry adiabatic lapse rate; moist adiabatic lapse rate
latent heat 78, 83, 246
role in hurricanes 200, 201
water vapor 76, 76
law of thermodynamics, first 92, 93, 96
laws of conservation, see conservation laws
LCL, see lifting condensation level
lenticular clouds 116, 246
level of free convection (LFC) 111, 246
LFC, see level of free convection
lifting, cloud formation 97, 101–102
lifting condensation level (LCL) 97, 106, 109, 246
lightning 188–189, 246, see also thunderstorms
charge separation 188
cloud-to-ground lightning 188, 189
cumulonimbus clouds 188
supercell storms 189–193, 192
tornadoes 191, 192–195
limiting factors, forecasting 212
Los Angeles, photochemical smog 224, 228
low pressure areas 23, 23
subpolar 151, 249
troughs 23, 25, 250
mammatus clouds 186, 187, 246
maps, see weather maps
maritime climate 71
maritime polar (mP) air masses 168
maritime tropical (mT) air masses 168
mass, law of conservation of 6, 211, 246
mean sea level 24, 246
medium-range forecast 220–222, 246
ensemble forecasts 220
example 222
mercury barometers 8, 9, 246
mesocyclone, supercell storms 190
mesolow
mesopause 48, 48, 246
Mesoscale Convective System (MCS) 187
mesosphere 48, 246
meteograms, dew point temperature 85–86
meteorological sunrise/sunset 69
methane (CH₄) 43, 223, 246
increase since Industrial Revolution 232
Mexico City, photochemical smog 224, 228
microbursts 187, 246
midlatitude cyclones 20, 24, 25, 36, 68, 151, 167, 181
air masses 167–168
climate change 236–237
cloud pattern 32, 34
comparison with hurricanes 199, 204, 206
convergence and divergence regions 135
decaying stage 173, 179
deepening cyclone 173, 177
definition 168
development 172–181
example 176–180
fronts 168–172
height 42
intensification 180
jet stream 48
life cycle 172–174
location 180–181
mature stage 173, 178, 178
meteogram 85
Norwegian cyclone model 173–174
occluded stage 173, 179
southern hemisphere 182
three-cell model of circulation 154, 157
short-wave troughs 172–174
vertical structure 174–176
wave cyclone 173
midlatitude temperature gradient 150
midlatitude westerlies 151
midlatitudes 34, 246
Milankovitch, Milutin 231
midlatitude temperature 34, 25
midlatitude westerlies 151
mixed-phase clouds 118
momentum
momentum, law of conservation of 10, 11, 126, 247
model output statistics (MOS) 218, 220
moist adiabatic lapse rate 96, 97, 106
moisture gradient 84
molecular motion 2, 2
momentum 247
momentum, law of conservation of 10, 11, 126, 247
monsoons 73, 158–159, 236, 247
mountain barriers 140
mountain ranges
cloud formation 97
warming effects 97–100
neutral temperature profile 105
Newton, Isaac 126
Newton’s laws of motion 11, 126–127, 210
newtons (force units) 9
nimbature 114, 247
nitric oxide (NO) 224
nitrogen 44, 58–59, 247
nitrogen dioxide (NO₂) 224
nitrous oxide (N₂O) 43, 223, 247
NOAA Climate Prediction Center 222
North Atlantic Oscillation (NAO) 165
northern hemisphere warming, climate change 236
Norwegian cyclone model 173–174
nowcasts 218
NO\textsubscript{x}, see nitric oxide (NO); nitrous oxide (N\textsubscript{2}O)
nucleation, see heterogeneous nucleation; homogeneous nucleation
occluded fronts 29, 170–171, 247
ocean acidification, impact of climate change 237
ocean latent heat, role in hurricanes 200, 201
ocean prediction models 222
ocean variability, in climate models 238
Olympic Mountains 140, 141
optical phenomena
22° halo 124
46° halo 124
rainbow 124
orographic lifting, cloud formation 97
orographic precipitation 98, 100, 247
orographic subsidence 97–100
overrunning 102, 169, 171, 179, 247
oxygen 44, 46, 58–59, 247
ozone (O\textsubscript{3}) 247
absorption of radiation 60, 64
Chapman reactions 46
chlorofluorocarbons 46
stratospheric 10, 43, 45, 46, 247
tropospheric 224
ozone hole 45, 46, 47, 49, 247
Pacific High 151, 155, 247
Pacific jet stream 151
Pacific storm tracks 180
Pacific warm pool 160, 247
Pacific/North American pattern (PNA) 165
Pacific/South American pattern (PSA) 165
parameterization 213, 247
particulates 224
PM\textsubscript{10} 224
PM\textsubscript{2.5} 224
pascals (pressure units) 9
permafrost thawing 237
permanent gases 42–43, 49, 247
Petterssen, Sverre 183
photochemical smog 224–225
photosynthesis 43, 45, 247
Planck, Max 55, 56, 57
Planck feedback 65
Planck’s law 55, 53, 61, 65
planetary boundary layer 138
plants, effects of climate change 237
PNA (Pacific/North American pattern) 165
polar cell 154, 247
polar front 146, 247
polar jet 151
polar regions, low precipitation 151
polar-orbiting satellites 35–37, 247
pole-to-equator temperature difference 236
pollutants 223–225,
see also air pollution
carbon dioxide 223
carbon monoxide 224
chlorofluorocarbons 223
gases and compounds 224
greenhouse gases 223
methane 223
nitric oxide 224
nitrogen dioxide 224
nitrous oxide 223
photochemical smog 224–225
primary and secondary 224
smog 224
sulfur dioxide 224
volatile organic compounds 224
positive feedback loops, global warming 65
precipitation 13–14, 117, 123, 248
averaged atmosphere 151–152
collision and coalescence 118–119
effects of climate change 235
equatorial regions 151
ice crystal growth 119–121
measurement 13, 16, 28
orographic 98, 100, 247
polar regions 151
vertical structure 28
warm vs. cold clouds 117–118
precipitation types 121–122
black ice 122
drizzle 122
freezing rain 14, 122, 244
hail 13, 122, 244
ice storms 122
rain 119, 122, 248
showers 121
sleet 13, 14, 122, 249
snow 13, 122, 249
pressure 6–7, 248,
see also atmospheric pressure
pressure gradient force 127–128, 128, 202–204, 248
primary pollutants 224
probabilistic forecasting 210
prognostic equations 210–213, 248
PSA (Pacific/South American pattern) 165
radar 28–29, 248,
see also Doppler radar
radar images, use in forecasting precipitation 220
radiation 44, 53, 58, 248,
see also absorption, radiation conversion to heat 57
diurnal variations 68–71
heat imbalance 66–68
influence of clouds 71–72
land–ocean contrasts 72–73
seasonal variations 68
temperature 61
radiation fog 82, 88, 91, 248
radiative interactions 55
absorption 57
equilibrium 58–60, 248
greenhouse effect 61–66
reflection 57–58
scattering 58–59
selective absorbers 60
visible and infrared windows 60–61
radiosondes 4–5, 5, 13, 94, 248
dew point temperature 87
use in forecasting 220
rain 119, 122, 248,
see also precipitation
rain forests 154, 156
rain gauges 13, 14, 248
rainbows 124
reflection 57–58, 248
relative humidity (RH) 78–79, 87–88, 248
cloud formation 95–96
meteograms 85
related to latitude 80
relative vs. absolute humidity 80
representative concentration pathways (RCPs), IPCC 233
return stroke, cloud-to-ground lightning 188, 189
ridges, high pressure 23, 25, 248
riming, ice crystals 120, 248
roaring forties (midlatitude westerlies) 151
rocks, chemical weathering 44
Rocky Mountains 140
chinook 99
enhanced cyclogenesis 180, 181
Rossby, Carl-Gustaf 183
Rosby waves 183
Saffir–Simpson hurricane intensity scale 198, 206, 248
Sahel
alternate dry and wet seasons 157–158
threat of desertification 158
three-cell model of circulation 157–158
satellite images
cloud cover information 29
cloud signatures 2, 39–40, 219
global 34, 36
infrared 31–32
hurricanes 200
use in forecasting 219
visible 30–31, 31
water vapor 32–33
satellites 29–30
geostationary 30, 33–35, 244
polar-orbiting 35–37, 37, 247
TIROS (Television Infrared Observation Satellite Program) 29
use in wind measurement 13
saturated adiabatic lapse rate (moist adiabatic lapse rate) 96, 97, 106
saturation 76–77, 248
cloud formation 77, 80, 88
in mammatus clouds 186
saturation water vapor pressure 79, 248
increased by global warming 234
lower over ice than water 119
related to latitude 80
related to temperature 79, 87
variation with height 98
scattering of radiation 58–59, 248
scientific method xii
sea breeze 73, 128–130, 151, 248
circulation 129, 152
formation 128–129
sea level rise, impact of climate change 237
seasonal cycles 68, 248
seasonal outlooks, forecasting 222
climatology 222
ocean prediction models 222
value of 222
secondary pollutants 224
selective absorbers 248
severe thunderstorms
frontal squall line 187
mammatus clouds 186, 187, 246
micro-bursts 187
shelf cloud 187, 188, 248
wind shear 184, 187
Shaefer, Vincent 121
Shapiro, Mel 172
Shapiro–Keyser model (T-bone model) 172
shelf cloud 187, 188, 248
short-wave troughs 172–174
showers 121
silver iodide, use in seeding clouds 121
single-cell model of circulation 152–154
sleet 13, 14, 122, 249
smog 91, 224, 249
see also photochemical smog
snow 13, 122, 249
snowflakes, formation of 120
solar radiation, see radiation
solar system formation 44
southern hemisphere, midlatitude cyclones 182
spatial representations, see weather maps
specific humidity 77, 249
squall line 187, 249
stable air 102–104, 249
stable temperature profile 104
stable vs. unstable air 104–105, 106, 107
station model 17–20, 20, 249
stationary fronts 169, 249
statistical process of forecasting 218–219
forecast calibration 218
machine learning 218
model output statistics 218, 220
nowcasts 218
removing bias 218
statistical post-processing 218
Stefan, Jožef 56
Stefan–Boltzmann law 56, 57, 60, 67
stratosphere 10, 34
stratocumulus 116
stratopause 50
storm tracks 180
storm intensification, hurricanes 206
stepped leader, cloud-to-ground lightning 188
sting jets 172
storm intensification, hurricanes 206
storm surges 206–207
storm tracks 180, 249
stratiform 112, 113
stratocumulus 116, 249
stratopause 48, 48, 249
stratosphere 10, 249
temperature inversion 48, 49
stratus 102, 113, 249
streamlines, wind 138, 139
subgeostrophic wind 134, 249
subpolar lows 151, 249
subsidence 34, 97–100, 249
inhibiting cloud formation 100
subtropical deserts 154, 156
subtropical highs 151, 249
subtropical jet 151
subtropics 34, 151, 249
sulfur dioxide (SO₂) 224
sunrise/sunset, meteorological 69
Super Typhoon Haiyan 207
supercell storms 189–193, 192, 249
mesocyclone 190
mesolow
wind shear 190
supercooled water 118, 249
supergeostrophic wind 134, 249
supersaturation 79, 90, 249
surface friction 136, 138–140, 249
surface maps 20–25, 26, 146
dew point temperature 83–84
temperature 21
surface pressure
averaged atmosphere 151
use in forecasting 219
surface temperature
averaged atmosphere 146–147
effect on pressure distribution 147
use in forecasting 219
surface winds 135–137
convergence into lows 138
divergence from highs 138
hurricanes 202–203
sustained wind speed 12, 249
symbols, weather maps 18
synoptic scale 225, 250
synoptic view of atmosphere 25

T-bone model, cyclone structure 172
teleconnections 164, 165, 217, 250
temperature 1, 3, 250
contrast between tropics and poles 147, 236
diurnal cycle in temperature profiles 69–70
fronts 21–22
gradients 21, 146, 150, 167
and heat 2–3
and humidity 79–80
maps 20–21, 21
measurement 2, 16
and pressure 6, 25,
see also atmospheric pressure and radiation 55
scales 3–4
station model 18
surface 3, 146–147, 219
vertical distribution 47, 48
temperature inversions
close to ground 91
night-time 70
stratosphere 48, 49
trapping air 105, 142
tropopause 49
thawing of permafrost 237
thermal expansion 52
thermals 53, 54, 250
in unstable air 104
thermocline 160, 162, 250
thermodynamics 51, 92, 93, 96, 211
thermometers 5, 250
thermosphere 48, 250
three-cell model of
circulation 154–155
extratropical cyclones 154, 157
Ferrel cell 154
Intertropical Convergence Zone 154
katabatic winds 157, 157
polar cell 154
Sahel 157–158
USA, West Coast vs. East Coast 155, 157
thunder 188, 250
thunderstorms 102, 109, 111, 113, 184, 195–196, 250
lightning and thunder 188–189
ordinary 184–186
severe 186–187
Tibetan Plateau, enhanced cyclogenesis 180
time series, weather variables 16
 tipping bucket rain gauges 13, 14
TIROS (Television Infrared Observation Satellite Program) 29
topography, influence on wind 140–143
Tornado Alley 192, 194–195, 250
dryline 194
tornado family 193
tornados 250
development 192–194, 194
Fujita scale 192
funnel cloud 192
hook echo 195
lightning and thunder 191, 192–195
mesolow
spawned by supercells 192
vortex 193
wall cloud 192
Torricelli, Evangelista 8
ultraviolet radiation (UV) 45, 53, 250
uncertainties 213–216, 238, 250
United Nations Framework Convention on Climate Change (UNFCCC) 238
unstable air 104, 251
unstable temperature profile 104, 105
upper-level heights
averaged atmosphere 148–151
jet stream 149
upper-level maps 25–28
upper-level troughs 149, 151
upper-level winds, westerly 148
upwelling 159, 251
US National Weather Service 15, 220
valley bottoms 228
valley breezes 140, 142, 251

valley fog 142, 251
variable gases 49, 251
variables, weather 1
 atmospheric pressure 6–10
 precipitation 13–14
 temperature 1
 weather stations 14–15, 14, 15, 16
 wind 10–13, 16
 vectors, wind 127, 139
vertical atmospheric profiles 13, 16, 24
vertical fluid motion, see convection
vertical structure, cyclones 174–176
visible window, absorption spectrum 60
volatile organic compounds (VOCs) 224
volcanic eruptions, role in atmosphere formation 44
Vonnegut, Bernard 121
vortex, see cyclones, hurricanes; tornadoes
Walker, Sir Gilbert 161
Walker circulation 161, 251
wall cloud 192, 251
warm clouds 117
warm fronts 22, 22, 29, 251
 midlatitude cyclones 169–170
 warm occlusion (occluded fronts) 29, 170–171, 247
warm pool, Pacific 160, 251
warm sector 25, 169, 251
warm vs. cold clouds 117–118
water
 atmospheric 75
 heat capacity 72
 phases, definition 75
phases, difference in
 energy 75–76, 76
water cycle 75–76, 233–235
water droplets, cloud vs. rain 117
water vapor 43, 251
 absorption of radiation 60, 64
 capacity 81
 concentration 43
 effects of climate change 234
 feedback loop 65, 234
 heat capacity 72
 heating effect 64
 images 32–33
 latent heat 76, 76
 mixing ratio 77
 pressure 77, 251
weather (general information) xi–xii
weather balloons, see radiosondes
weather forecasting, see forecasting
weather maps 14, 16, 17, 26
 radar 28–29
 satellites 29–30
 station model 17–20
 surface maps 20–25
 symbols 18
 upper-level maps 25–28
weather modification 121
weather stations 14–15, 14, 15, 16, 251
 use in forecasting 219
weather variables, see variables, weather
Wegener, Alfred 119
West Coast vs. East Coast (USA) 155, 157
Wien, Wilhelm 57
Wien’s displacement law 56
wind
 126, 143–144
 converging 138, 139
 Coriolis force 130–131, 134
 dispersion of pollution 225, 227
 diverging 138
 effect of surface friction 136, 138–140
force and acceleration 126–127
geostrophic 131–134
 global systems 145, 165–166, 233, 235–236
 gradient 134–135
 gusts 12–13, 251
 influence of topography 140–143
katabatic 143, 157, 246
 measurement 11–12, 13
 pressure gradient force 127–128
 reporting 12–13
sea breeze and land breeze 128–130
streamlines 138, 140
subgeostrophic 134, 249
supergeostrophic 134, 249
 surface 135–137
 vanes 11, 251
 vectors 127, 139
wind direction 11, 16
weather variables 10–13
 station model 18, 19
wind rotation
 anticyclonic 136
 cyclonic 136, 137
 rule, highs and lows 137
wind shear 251
 hurricanes 206
 severe thunderstorms 184, 187
 supercell storms 190
wind speed 11–12, 16
 barbs and pennants 19
 Beaufort wind scale 12
 station model 18, 19
 sustained 12, 249