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Introduction to Combinatorics

How we count things turns out to have a powerful significance in physical

problems! One of the oldest problems stems from undercounting and over-

counting the number of possible configurations a particular system can have –

mathematically, this is usually due to the fact that objects are mistakenly

assumed to be indistinguishable when they are not, and vice versa. However,

one of the great surprises of physics is that identical particles are funda-

mentally indistinguishable. In this chapter, we will introduce some of the

basic mathematical objects that occur in physical problems, and give their

enumeration. Statistical mechanics is one of the key sources of ideas, so we

spend some time on the basic concepts here, especially as partition functions

are clear examples of generating functions that we will encounter later on. We

will recall some of the basic mathematical concepts in enumeration, leading

on to the role of generating functions. At the end, we make extensive use

of generating functions, exploiting the methods for dealing with partition

functions in statistical mechanics, but for specific combinatorial families such

as permutations and partitions.

We start, however, with the touchstone for all combinatorial problems: how

to distribute balls in urns.

1.1 Counting: Balls and Urns

Proposition 1.1.1 There are KN different ways to distribute the N distinguish-

able balls among K distinguishable urns.

The proof is based on the simple observation that there are K choices of urn

for each of the N balls. Suppose next that we have more urns than balls.
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2 Introduction to Combinatorics

Figure 1.1 Occupation numbers of distinguishable balls in distinguishable
urns.

Proposition 1.1.2 The total number of ways to distribute the N distinguishable

balls among K distinguishable urns so that no urn ends up with more than one

ball is (later we will call this a falling factorial)

KN � K (K − 1) · · · (K − N + 1) .

The argument here is simple enough: if we have already distributed M balls

among the urns, with no urn having more than one ball inside, so if we now

want to place in an extra ball we have these K − M empty urns remaining to

choose from; therefore, KM+1 = KM (K − M) with K1 = K.

Let nk denote the number of balls in urn k; we call this the occupation

number of the urn. See Figure 1.1. We now give the number of possibilities

leading to a given set of occupation numbers, subject to the constraint of a fixed

total number of balls,
∑K

k=1 nk = N.

Proposition 1.1.3 The number of ways to distribute N distinguishable balls

among N distinguishable urns so that we have a prescribed number nk balls

are in the kth urn, for each k = 1, . . . , K, is the multinomial coefficient
(

N

n1 . . . nK

)

=
N!

n1! n2! . . . nK!
.

The proof here is based on the observation that there are
(

N
n1

)

ways to choose

the n1 balls to go into the first urn, then
(

N−n1
n2

)

ways to choose next n2 balls to

go into the second urn, and so on, leading to
(

N

n1

) (

N − n1

n2

)

· · ·

(

N − n1 − · · · − nK−1

nK

)

≡
N!

n1! n2! . . . nK!
.

Suppose however that the balls are in fact indistinguishable as in Figure 1.2!

Then we do not distinguish between distributions having the same occupation

numbers for the urns.
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1.2 Statistical Physics 3

Figure 1.2 Occupation numbers of indistinguishable balls in distinguishable
urns.

Proposition 1.1.4 There are
(

N+K−1
N

)

ways to distribute N indistinguishable

balls among K distinguishable urns.

Proof Take, for example, K = 6 urns and N = 8 balls and consider the

distribution represented by occupation sequence (1, 2, 0, 4, 1, 0) , then encode

this as follows:

•| • •| | • • • •| • |

which means one ball in urn 1, two balls in urn 2, no balls in urn 3, and so on.

In this encoding, we have N +K −1 symbols (balls and sticks), N of which are

balls and K − 1 of which are sticks (separations between the urns). In any such

distribution, we must choose which N of the N + K − 1 symbols are to be the

balls, and there are
(

N+K−1
N

)

different ways to do this. Each way of selecting

these symbols corresponds to a unique distribution, and vice versa.

Proposition 1.1.5 The number of ways to distribute N indistinguishable balls

among K distinguishable urns, if we only allow at most one ball per urn, is
(

K
N

)

.

That is, we must choose N out of the K urns to have a ball inside.

These enumerations turn out to be of immediate relevance to sampling theory

in statistics. We note that if we have a set of K items and we draw a sample

of size N, then if we make no replacement there will be
(

K
N

)

such samples –

imagine placing a ball into urn j if the jth element is selected! If replacement is

allowed, then the number of samples is
(

N+K−1
N

)

.

1.2 Statistical Physics

Counting problems surfaced early on in the theory of statistical mechanics, and

we recall the basic setting next.
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4 Introduction to Combinatorics

Figure 1.3 Three microstates, each corresponding to N = 24 particles, with 8
“on” (the black boxes).

1.2.1 The Microcanonical Ensemble

Two-State Model

Ludwig Boltzmann pioneered the microscopic derivation of laws of thermody-

namics. To understand his ideas, we consider a very simple model of a solid

material consisting of N particles, where each particle can be in either one of

two states: an “off” state of energy 0 and an “on” state of energy ε. The total

energy is therefore U = εM, where M is the number of particles in the “on”

state. In Figure 1.3, we have three typical examples where N = 24 and U = 8ε,

that is, in each of these we have 8 “on” states of of a total of 24. Each of these

configurations is referred to as a microstate, and we say that they are consistent

with the macrostate (U = 8ε, N = 24).

Boltzmann’s idea was that if the system was isolated, so that the energy

U was fixed, the system’s internal dynamics would make it jump from one

microstate to another with only microstates consistent with the fixed macrostate

(U, N) allowed. (In other words, the number of particles, N, and their energy

U, are to be constants on the motion – whatever that happens to be.) Here the

total number of microstates consistent with macrostate (U = εM, N) is then

W (U, M) =

(

N

M

)

.

He then made the ergodic hypothesis: over a long enough period of time, each

of these microstates was equally likely: that is, the system may be found to be in

a given microstate with frequency 1/W. Therefore, long time averages would

equate to averages over all the microstates consistent with the macrostate, with

each microstate having equal probabilistic weight 1/W. The latter probability

system is known as the microcanonical ensemble. We note that the set of all

microstates consistent with (U = 8ε, N = 24) also includes some less-than-

random-looking configurations such as the ones shown in Figure 1.4. But,

nevertheless, they each get equal weight: here W =
(

24
8

)

= 735, 471.

At this resolution, we would expect to see the system run through the possi-

ble microstates, so that the picture over time would appear something like static

on a TV screen. Configurations with a discernable pattern, as in Figure 1.4,

www.cambridge.org/9781108416764
www.cambridge.org


Cambridge University Press
978-1-108-41676-4 — Quantum Fields and Processes
John Gough , Joachim Kupsch 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Statistical Physics 5

Figure 1.4 Another three microstates consistent with the (U = 8ε, N = 24).
Despite their apparent structure, each has the same 1/735,471 chance to occur
as the more random ones in Figure 1.3.

may flash up briefly from time to time, but most of the time we are looking at

fairly random-looking configurations such as in Figure 1.3. If N is large, and

the particles are small, then we would expect to be looking most of the time at

a uniform gray – the shade of gray determined by the ration M/N.

Boltzmann’s remarkable proposal was that the entropy associated with a

macrostate (U, N) was the logarithm of the number of consistent microstates

S (U, N) = k ln W (U, N)

where k is a scale factor fixing our eventual definition of temperature scale.

In the present case, we have W (U = εM, N) = N!
(N−M)!M!

. If we take N large

with U = Nu for some fixed ratio u, then using Stirling’s approximation,

ln N! = N ln N − N + O(ln N), we find that the entropy per particle in the

bulk limit (N → ∞) is

s (u) = lim
N→∞

S (U = Nu, N)

N

= −kp0 ln p0 − kp1 ln p1

where p1 = M
N

≡ u
ε

and p0 = 1 − p1. (Note p1 is the proportion of parti-

cles that are “on” in each of these microstates, with p0 the proportion “off”.)

Alternatively, we may write this as

s (u) = −k
{u

ε
ln

u

ε
+

(

1 −
u

ε

)

ln
(

1 −
u

ε

)}

.

From thermodynamics, one should identify the temperature T via the relation

1/T = ∂s
∂u

≡ − k
ε

ln
(

ε
u

− 1
)

, and so in this model we have

u =
ε

eε/kT + 1
.

Somewhat surprisingly, this artificial model actually shows very good qualita-

tive behavior for small values of u – see, for instance, Callen (1985, chapter 15).

(Note that for 0 ≤ u < ε/2, the temperature will be positive, but becomes

negative for higher values ε/2 < u ≤ ε. Negative temperatures do actually
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6 Introduction to Combinatorics

Figure 1.5 A microstate consistent with the (U = 8ε, N = 24) in the Einstein
model: one of 7,888,725.

makes physical sense, however, and are encountered in the related model of a

two-state ferromagnet.)

Einstein’s Model

A related model is the Einstein model for a crystalline solid. The difference is

that each particle can have allowed energies 0, ε, 2ε, 3ε, . . . . This time we may

depict a microstate as in Figure 1.5, where the number n in each box tells us

that the corresponding particle has energy nε (or, perhaps more physically, that

there are n quanta in the box!). We see that the number of microstates consistent

with a macrostate (U = εM, N) will be

W =

(

N + M − 1

M

)

.

In other words, the number of ways of distributing M is indistinguishable

quanta among N distinguishable boxes. This time, again using Stirling’s iden-

tity, one may show that the entropy per particle in the bulk limit is

s (u) = k
{

ln
(

1 +
u

ε

)

+
u

ε
ln

(

1 +
ε

u

)}

,

and that u = ε

eε/kT−1
.

1.2.2 The Canonical Ensemble

Boltzmann’s ergodic hypothesis marks the introduction of probability theory

into physics. So far we have not used probability explicitly; however, this

changes if we consider the situation depicted in Figure 1.6. For simplicity, we

work with the two-state model.

We fix the total energy Utot of the Ntot = N + N′ particles, and then Boltz-

mann’s principle tells us that each microstate of the total system is equally

likely. However, the total number of “on” particles in total is constant, the

number that are inside the system will vary with a probability distribution

determined by the ergodic hypothesis. Let Mtot = Utot/ε, and suppose that we

have x particles in the “on” state in the system – then there are
(

N
x

)

microstates
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1.2 Statistical Physics 7

Figure 1.6 A system with N particles and microstate ω forms a subsystem of
a larger system of N + N′ particles.

of the system consistent with this, and
(

N′

Mtot−x

)

microstates possible for the

complement. Allowing for all possible x leads to

(

N + N′

Mtot

)

=

Mtot
∑

x=0

(

N

x

) (

N′

Mtot − x

)

.

If N, N′ and Mtot are large of the same order, then it turns out that the largest

term in the sum comes from x ≈ ρN, where ρ = Mtot/Ntot. In fact, this one

term alone dominates to the extent that one may ignore all the other terms. This

is related to the large deviation principle, which we discuss in Chapter 7.

The energy of the subsystem is now a random variable, and Boltzmann’s

hypothesis tells us its distribution. We now consider the situation where the

number N of particles in our system is large but fixed, but we take N′ → ∞.

We do this in such a way that the average number ū = ε Mtot/Ntot is a constant.

Suppose we have a fixed microstate ω of our subsystem with energy E(ω),

i.e. the number of “on” particles in the subsystem. Then the probability of the

particular microstate, ω, occurring is

pN′(ω) = W(U′, N′)/W(Utot, Ntot)

=

(

N′

ū
ε
N′ + ū−u

ε
N

)/(

N + N′

ū
ε
(N + N′)

)

where u = E(ω)/N is the energy density of the subsystem. Now making the

approximation that W(uN, N) ≈ eNs(u)/k, we find

k ln pN′(ω) = N′ s

(

ū + (ū − u)
N

N′

)

− (N + N′) s(ū)

= −N s(ū) + kN′

[

s

(

ū + (ū − u)
N

N′

)

− s(ū)

]

→ −N s(ū) + kNs′(ū)(ū − u),
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8 Introduction to Combinatorics

since s is differentiable. Specifying the average energy per particle in the bulk

limit N′ → ∞ to be ū is equivalent to fixing the temperature T via the rela-

tion 1/T = s′(ū), from which we see that ln pN′(ω) → 1
kT

(

F − uN
)

, where

F = N
(

ū − Ts(ū)
)

. (Note that the relation between ū and T is one-to-one. The

variable F = U − TS is the Helmholtz free-energy in thermodynamics.) That

is, we obtain the probability

pcan.(ω) =
1

Z
e−E(ω)/kT ,

where the normalization is given by the canonical partition function

ZN = e−F/kT =
∑

ω

e−E(ω)/kT ,

where the sum is over all microstates consistent with having a fixed number N

of particles.

The probability distribution that we obtain in this way is called the canon-

ical ensemble and is interpreted as saying that our subsystem is in thermal

equilibrium with a heat bath at temperature T .

The derivation presented in the preceding is actually very general. We relied

on the relation W(uN, N) ≈ eNs(u)/k, but not the specifics of the entropy per

particle, s(u). So the same argument will go through so long as s(u) exists and

defines a monotone increasing, strictly concave function of u.

1.2.3 The Grand Canonical Ensemble

We now describe the situation in statistical mechanics where we have a gas

consisting of a number of particles, N, each of which can have one of K

distinguishable states with energy values ε1 ≤ ε2 ≤ · · · ≤ εK ; see Callen

(1985). We allow both the energy and the number of particles to vary: we allow

microstates ω, which have N(ω) particles and energy E(ω), and introduce the

grand canonical ensemble

pg.c.(ω) =
1

�
e
−
(

E(ω)−μN(ω)
)

/kT
,

where the normalization is given by the grand canonical partition function

� =
∑

ω

e
−
(

E(ω)−μN(ω)
)

/kT
,

where the sum is now over all microstates – unrestricted in both number and

energy. We introduce the standard notation of the inverse temperature β =

1/kT , and the parameter μ is known as the chemical potential. The alternate

parameter z = eβμ is called the fugacity.
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1.2 Statistical Physics 9

We will make extensive use of the following lemma.

Lemma 1.2.1 (The
∑∏

←→
∏ ∑

Lemma) Let M and K be countable

sets, and let MK denote the sequences m = (mk)k∈K where mk ∈ M, and let

f : K × M → C. We have the formal series relation

∑

m∈MK

∏

k∈K

f (k, mk) =
∏

k∈K

{

∑

m∈M

f (k, m)

}

.

Proof If we expand out the right-hand side, we find that we get a sum over

terms of the form
∏

k∈K f (k, mk), where all possible values mk ∈ M will occur.

Written in terms of the m = (mk)k∈K gives the left-hand side.

In many cases, the expression will be convergent.

1.2.4 Maxwell–Boltzmann Statistics

Here we assume that the particles are all distinguishable. Suppose that the jth

particle has energy εk(j), then the sequence of numbers k = (k (1) , . . . , k (N))

determine the state of the gas. In particular, the set of all possible configura-

tions is

�N,K = {1, . . . , K}N ,

and we have #�N,K = KN . We give a Boltzmann weight to a state k ∈ �N,K of

e−βE(k), where the total energy is E (k) =
∑N

j=1 εk(j). We shall be interested in

the canonical partition function

ZN (β) =
∑

k∈�N,K

e−βE(k) =
∑

k∈�N,K

N
∏

j=1

e−βεk(j) ≡

(

K
∑

k=1

e−βεk

)N

,

where we used the
∑ ∏

←→
∏ ∑

Lemma for the last part. The associated

grand canonical partition function is

� (β, z) =

∞
∑

N=0

zNZN (β) =
1

1 − z
∑K

k=1 e−βεk

.

This was recognized as leading to an unphysical answer as some of the ther-

modynamic potentials (in particular, the entropy) ended up being nonextensive.

This was known as the Gibbs paradox, and resolution was to apply a correction

factor 1/N! to each ZN (β), nominally to account for indistinguishability of the

gas particles and to crudely correct for overcounting of possibilities. This now

leads to the physically acceptable form
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10 Introduction to Combinatorics

� (β, z) =

∞
∑

N=0

1

N!
zNZN (β) = exp

{

z

K
∑

k=1

e−βεk

}

.

1.2.5 Bose–Einstein Statistics

Bosons are fundamentally indistinguishable particles. We are able to say, for

instance, that nk particles have the kth energy value εk, for each k, but physically

there is no more detailed description to give – the particles have no identities

of their own beyond that. The set of all possible configurations is therefore

�+
N,K =

{

(n1, . . . , nK) ∈ (N+)K :

K
∑

k=1

nk = N

}

where N+ � {0, 1, 2, . . .}. In particular, we have #�+
N,K =

(

N+K−1
N

)

. The

energy associated with a state n = (n1, . . . , nK) is then E (n) =
∑K

k=1 εknk,

and we are led to the Boson canonical partition function

Z+
N (β) =

∑

n∈�+
N,K

e−βE(n) =
∑

n∈�+
N,K

K
∏

k=1

e−βεjnk .

This time the associated grand canonical partition function is

�+ (β, z) =

∞
∑

N=0

zNZ+
N (β)

=
∑

(n1,...,nK)∈(N+)K

K
∏

k=1

(

ze−βεk
)nk

=

K
∏

k=1

∞
∑

n=0

(

ze−βεk
)n

=

K
∏

k=1

1

1 − ze−βεk
, (1.1)

where again we use the
∑ ∏

←→
∏ ∑

Lemma at the last stage. The ther-

modynamic potentials have the correct scaling properties and we do not have

to resort to any ad hoc corrections of the type needed for Maxwell–Boltzmann

statistics.
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