
Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

The Haskell School of Music

This textbook explores the fundamentals of computer music and functional

programming through the Haskell programming language. Functional programming is

typically considered difficult to learn. This introduction in the context of creating

music will allow students and professionals with a musical inclination to leverage their

experience to help understand concepts that might be intimidating in more traditional

computer science settings. Conversely, the book opens the door for programmers to

interact with music by using a medium that is familiar to them.

Readers will learn how to use the Euterpea library for Haskell (www.euterpea.com)

to represent and create their own music with code, without the need for other music

software. The book explores common paradigms used in algorithmic music

composition, such as stochastic generation, musical grammars, self-similarity, and

real-time interactive systems. Other topics covered include the basics of signal-based

systems in Haskell, sound synthesis, and virtual instrument design.

paul hudak was a professor of computer science at Yale University, Connecticut,

from 1982 to 2015. He was best known for his contributions to the development of the

Haskell programming language. A skilled saxophonist and jazz musician, Hudak had

used a combination of his enthusiasm for music and computer science to create the

Euterpea library for representing music in Haskell.

donya quick is Research Assistant Professor of Music and Computation at

Stevens Institute of Technology, New Jersey. Her research explores the intersection of

artificial intelligence and computational linguistics with music, and includes working

on an automated composition system called Kulitta. In addition, she is also involved in

the MUSICA project for interactive improvisation and composition by conversion,

which is part of the DAPRA Communicating with Computers program.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

The Haskell School of Music

From Signals to Symphonies

PAUL HUDAK

DONYA QUICK

Stevens Institute of Technology

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108416757

DOI: 10.1017/9781108241861

© Paul Hudak and Donya Quick 2018

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2018

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Hudak, Paul, author. | Quick, Donya, author.

Title: The Haskell school of music : from signals to symphonies / Paul Hudak, Donya Quick.

Description: Cambridge, United Kingdom ; New York, NY :

Cambridge University Press, 2018. | Includes bibliographical references and index.

Identifiers: LCCN 2018016879 | ISBN 9781108416757 (hardback : alk. paper)

Subjects: LCSH: Haskell (Computer program language) | Computer music–Instruction

and study. | Functional programming (Computer science)

Classification: LCC ML74.4.H37 H84 2018 | DDC 781.3/45133–dc23

LC record available at https://lccn.loc.gov/2018016879

ISBN 978-1-108-41675-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Preface page xi

Acknowledgments xvi

1 Computer Music, Euterpea, and Haskell 1

1.1 The Note versus Signal Dichotomy 2

1.2 Basic Principles of Programming 3

1.3 Computation by Calculation 4

1.4 Expressions and Values 8

1.5 Types 9

1.6 Function Types and Type Signatures 11

1.7 Abstraction, Abstraction, Abstraction 12

1.8 Haskell Equality versus Musical Equality 21

1.9 Code Reuse and Modularity 22

1.10 [Advanced] Programming with Numbers 23

2 Simple Music 27

2.1 Preliminaries 27

2.2 Notes, Music, and Polymorphism 29

2.3 Convenient Auxiliary Functions 34

2.4 Absolute Pitches 39

3 Polymorphic and Higher-Order Functions 42

3.1 Polymorphic Types 42

3.2 Abstraction over Recursive Definitions 44

3.3 Append 47

3.4 Fold 49

3.5 [Advanced] A Final Example: Reverse 54

3.6 Currying 56

3.7 Errors 60

v

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

vi Contents

4 A Musical Interlude 63

4.1 Transcribing an Existing Score 63

4.2 Modules 65

4.3 Transcribing a More Complex Score 67

4.4 Simple Algorithmic Composition 72

5 Syntactic Magic 74

5.1 Sections 74

5.2 Anonymous Functions 75

5.3 List Comprehensions 77

5.4 Function Composition 80

5.5 Higher-Order Thinking 81

5.6 Infix Function Application 82

6 More Music 84

6.1 Delay and Repeat 84

6.2 Inversion and Retrograde 85

6.3 Computing Duration 87

6.4 Super-Retrograde 87

6.5 cut and remove 88

6.6 Removing Zeros 89

6.7 Truncating Parallel Composition 91

6.8 Trills 93

6.9 Grace Notes 95

6.10 Percussion 95

6.11 A Map for Music 97

6.12 A Fold for Music 99

6.13 Complex Rhythms 100

6.14 Crazy Recursion 101

7 Qualified Types and Type Classes 104

7.1 Motivation 104

7.2 Equality 106

7.3 Defining Our Own Type Classes 108

7.4 Haskell’s Standard Type Classes 113

7.5 Other Derived Instances 118

7.6 The Type of play 121

7.7 Reasoning with Type Classes 122

8 From Music to MIDI 125

8.1 An Introduction to MIDI 125

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents vii

8.2 MIDI Streams 128

8.3 Euterpea’s Playback Framework 129

9 Interpretation and Performance 134

9.1 Abstract Performance 134

9.2 Players 139

9.3 Putting It All Together 144

10 Self-Similar Music 148

10.1 Self-Similar Melody 148

10.2 Self-Similar Harmony 152

10.3 Other Self-Similar Structures 153

11 Proof by Induction 156

11.1 Induction and Recursion 156

11.2 Examples of List Induction 157

11.3 Proving Function Equivalences 159

11.4 Useful Properties on Lists 162

11.5 Induction on the Music Data Type 166

11.6 [Advanced] Induction on Other Data Types 170

12 An Algebra of Music 175

12.1 Musical Equivalence 175

12.2 Some Simple Axioms 177

12.3 The Fundamental Axiom Set 180

12.4 Other Musical Properties 182

13 L-Systems and Generative Grammars 184

13.1 A Simple Implementation 185

13.2 A More General Implementation 187

13.3 An L-System Grammar for Music 189

14 Random Numbers, Probability Distributions, and

Markov Chains 193

14.1 Random Numbers 193

14.2 Probability Distributions 196

14.3 Markov Chains 202

15 Basic Input/Output 205

15.1 IO in Haskell 205

15.2 do Syntax 206

15.3 Actions Are Just Values 208

15.4 Reading and Writing MIDI Files 210

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

16 Higher-Order Types and Monads 211

16.1 The Functor Class 211

16.2 The Monad Class 213

16.3 The MonadPlus Class 221

16.4 State Monads 222

16.5 Type Class Type Errors 225

17 Musical User Interfaces 227

17.1 Introduction 227

17.2 Basic Concepts 228

17.3 The UISF Arrow 233

17.4 Non-Widget Signal Functions 242

17.5 Musical Examples 246

17.6 Special Purpose and Custom Widgets 251

17.7 Advanced Topics 256

18 Sound and Signals 262

18.1 The Nature of Sound 262

18.2 Digital Audio 273

19 Euterpea’s Signal Functions 282

19.1 The Type of Audio Signals 282

19.2 Generating Sound 289

19.3 Clipping 290

19.4 Instruments 292

20 Spectrum Analysis 299

20.1 Fourier’s Theorem 299

20.2 The Discrete Fourier Transform 305

20.3 The Fast Fourier Transform 315

20.4 Further Pragmatics 317

21 Additive and Subtractive Synthesis 318

21.1 Additive Synthesis 319

21.2 Subtractive Synthesis 326

22 Amplitude and Frequency Modulation 331

22.1 Amplitude Modulation 331

22.2 Frequency Modulation 334

22.3 Examples 334

23 Physical Modeling 336

23.1 Introduction 336

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents ix

23.2 Delay Lines 336

23.3 Karplus-Strong Algorithm 340

23.4 Waveguide Synthesis 343

Appendix A The PreludeList Module 346

Appendix B Haskell’s Standard Type Classes 355

Appendix C Built-In Types Are Not Special 365

Appendix D Pattern-Matching Details 367

Appendix E Haskell Quick Reference 370

Appendix F Euterpea Quick Reference 373

Appendix G HSoM Quick Reference 377

Bibliography 379

Index 381

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

There is a certain mind-set, a certain viewpoint of the world, and a certain

approach to problem solving that collectively work best when programming

in Haskell (this is true for any programming paradigm). If you teach only

Haskell language details to a C programmer, he or she is likely to write

ugly, incomprehensible functional programs. But if you teach how to think

differently, how to see problems in a different light, functional solutions will

come easily, and elegant Haskell programs will result.

Music has many ties to mathematics. Combining the elegant mathematical

nature of Haskell with that of music is as natural as singing a nursery tune.

Using a high-level language to express musical ideas is, of course, not new.

But Haskell is unique in its insistence on purity (no side effects), and this alone

makes it particularly suitable for expressing musical ideas. By focusing on

what a musical entity is, rather than on how to create it, we allow musical ideas

to take their natural form as Haskell expressions. Haskell’s many abstraction

mechanisms allow us to write computer music programs that are elegant,

concise, yet powerful. We will consistently attempt to let the music express

itself as naturally as possible, without encoding it in terms of irrelevant

language details.

Of course, the ultimate goal of this book is not just to teach computer music

concepts. Along the way you will also learn Haskell. There is no limit to what

one might wish to do with computer music, and therefore the better you are

at programming, the more success you will have. Many languages designed

specifically for computer music – although fun to work with, easy to use, and

cute in concept – face the danger of being too limited in expressiveness.

You do not need to know much, if any, music theory to read this book, and

you do not need to play an instrument. Of course, the more you know about

music, the more you will be able to apply the concepts learned in this text in

musically creative ways.

xi

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xii Preface

This book’s general approach to introducing computer music concepts is to

first provide an intuitive explanation, then a mathematically rigorous definition,

and finally fully executable Haskell code. It will often be the case that there is

a close correspondence between the mathematical definition and the Haskell

code. Haskell features are introduced as they are needed, rather than all at

once, and this interleaving of concepts and applications makes the material

easier to digest.

Seasoned programmers having experience only with conventional impera-

tive and/or object-oriented languages are encouraged to read this text with an

open mind. Many things will be different, and will likely feel awkward. There

will be a tendency to rely on old habits when writing new programs, and to

ignore suggestions about how to approach things differently. If you can manage

to resist those tendencies, you will have an enjoyable learning experience.

Those who succeed in this process often find that many ideas about functional

programming can be applied to imperative and object-oriented languages as

well, and that their imperative coding style changes for the better.

The experienced programmer should also be patient with earlier topics, such

as “syntax,” “operator precedence,” etc., since the intent is for this text to be

readable by someone having only modest prior programming experience. With

patience, the more advanced ideas will appear soon enough.

If you are a novice programmer, take your time with the book; work through

the exercises, and don’t rush things. If, however, you don’t fully grasp an idea,

feel free to move on, but try to reread difficult material at a later time when

you have seen more examples of the concepts in action. For the most part, this

is a “show-by-example” textbook, and you should try to execute as many of

the programs in this text as you can, as well as every program that you write.

Learn-by-doing is the corollary to show-by-example.

Finally, some section titles are prefaced with the parenthetical phrase

“[Advanced]”. These sections may be skipped upon first reading, especially if

the focus is on learning computer music concepts, as opposed to programming

concepts.

Prerequisites

Basic algebra and familiarity with a terminal-style environment (often called

a command prompt in Windows) on your computer are also assumed as

prerequisites in this text. Some prior introduction to computer science concepts

and data structures (primarily lists and trees) is also strongly recommended.

This book is not a substitute for an introductory music theory course.

Rather, it is intended primarily for programmers with at least a small amount of

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xiii

musical experience (such as having taken a music appreciation course in school

or played an instrument at some point) who want to then explore music in the

context of a functional programming environment. Examples of musical con-

cepts that are considered prerequisites to this text are reading Western music

notation, the naming scheme for musical pitches as letters and octave numbers,

and the major and minor scales. That said, it is certainly not impossible to learn

Haskell and the Euterpea library from this book as a complete musical novice –

but you will likely need to consult other music-related resources to fill in the

gaps as you go along using a dictionary of musical terms. A wide array of

free music theory resources and tutorials for beginners are also freely available

online. Links to some useful music references and tutorials can be found on

the Euterpea website, www.euterpea.com.

Music Terminology

Some musical concepts have more than one term to refer to them, and which

synonym is preferred differs by region. For example, the following terms are

synonyms for note durations:

American English British English

Double whole note Breve

Whole note Semibreve

Half note Minim

Quarter note Crotchet

Eight note Quaver

Sixteenth note Semiquaver

This book uses the American English versions of these musical terms. The

reason for this is that they more closely mirror the mathematical relationships

represented by the concepts they refer to, and they are also the basis for names

of a number of values used in the software this text describes. The American

English standard for naming note durations is both more common in computer

music literature and easier to remember for those with limited musical

experience – who may struggle to remember what a hemidemisemiquaver is.

Software

There are several implementations of Haskell, all available free on the Internet

through the Haskell website, haskell.org. However, the one that has dominated

all others, and on which Euterpea is based, is GHC [1], an easy-to-use and

easy-to-install Haskell compiler and interpreter. GHC runs on a variety of

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xiv Preface

platforms, including Windows, Linux, and Mac. The preferred way to install

GHC is using Haskell Platform [2]. Once Haskell is installed, you will have

access to what is referred to as the Standard Prelude, a collection of predefined

definitions that are always available and do not need to be specially imported.

Two libraries are needed to code along with this textbook: Euterpea and

HSoM. Euterpea is a language for representing musical structures in Haskell,

and many of its features are covered in this book. HSoM is a supplemental

library containing many of the longer code examples in the text and two

additional features: support for modeling musical performance (Chapter 9) and

music-related graphical widgets (Chapter 17).

Detailed setup information for Haskell Platform, Euterpea, and HSoM is

available on the Euterpea website: www.euterpea.com. Please note: software

setup details for Haskell Platform and the Euterpea library varies by archi-

tecture (32-bit vs 64-bit), operating system, and compiler version. As the

exact setup details are subject to change with every new release of Euterpea’s

dependencies, please see www.euterpea.com for the most up-to-date instal-

lation instructions. While most installations go smoothly with the relatively

simple instructions described in the next section, there are many potential

differences from one machine to another that can complicate the process.

The Euterpea website also contains troubleshooting information for commonly

encountered installation problems.

Installation Instructions

The following setup instructions require an Internet connection.

• Download the appropriate version of Haskell Platform from

www.haskell.org/platform/ and install it on your machine.

• Open a command prompt (Windows) or terminal (Mac/Linux) and run the

following commands:

cabal update

cabal install Euterpea

cabal install HSoM

• Mac and Linux users will also need to install a MIDI software synthesizer.

Please see the Euterpea website for instructions on how to do this.

The Euterpea website also contains basic walkthroughs for getting started

working with the GHC compiler and interpreter within a command prompt or

terminal, loading source code files, and so on.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xv

Quick References

Brief references for the more commonly used features of Haskell, Euterpea,

and HSoM are listed in Appendices E, F, and G. These are intended to serve as

a fast way to look up function and value names when you already know a bit

about how to use them. A note to students: these few pages of ultra-condensed

material are not a substitute for reading the chapters!

Coding and Debugging

Errors are an inevitable part of coding. The best way to minimize the number

of errors you have to solve is to code a little bit and then immediately test

what you’ve done. If it’s broken, don’t wait – fix it then and there! Never press

onward and try to work on other things within a file that is broken elsewhere.

The reason for this is that one simple error can end up masking others. When

the compiler hits a serious problem, it may not even look at the rest of your file.

As a result, continuing to code without resolving error messages often results

in an explosion of new errors once the original one is fixed. You will save

yourself a lot of grief by developing good habits of incremental development

and not allowing errors to linger unsolved.

Coding style is also important. There are two reasons for this in Haskell.

The first is that Haskell is extremely sensitive to white space characters. Do

not mix spaces and tabs! Pick one and be consistent (spaces are typically

recommended). Indentation matters, and a small misalignment can sometimes

cause bizarre-looking error messages. Style is important, as is readability,

both by other programmers and by yourself at a later date. Many novice

programmers neglect good coding hygiene, which involves naming things

well, laying out code cleanly, and documenting complicated parts of the code.

This extra work may be tedious, but it is worthwhile. Coding large projects

is often very much dependent on the immediate state of mind. Without that

frame of reference, it’s not impossible that you could find your own code to be

impenetrable if you pick it up again later.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Acknowledgments

I wish to thank my funding agencies – the National Science Foundation,

the Defense Advanced Research Projects Agency, and Microsoft Research –

for their generous support of research that contributed to the foundations

of Euterpea. Yale University has provided me a stimulating and flexible

environment to pursue my dreams for more than thirty years, and I am

especially thankful for its recent support of the Computing and the Arts

initiative.

Tom Makucevich, a talented computer music practitioner and composer in

New Haven, was the original motivator, and first user, of Haskore, which pre-

ceded Euterpea. Watching him toil endlessly with low-level csound programs

was simply too much for me to bear! Several undergraduate students at Yale

contributed to the original design and implementation of Haskore. I would like

to thank in particular the contributions of Syam Gadde and Bo Whong, who

coauthored the original paper on Haskore. Additionally, Matt Zamec helped

me greatly in the creation of HasSound.

I wish to thank my more recent graduate students, in particular Hai (Paul)

Liu, Eric Cheng, Donya Quick, and Daniel Winograd-Cort, for their help

in writing much of the code that constitutes the current Euterpea library.

In addition, many students in my computer music classes at Yale provided

valuable feedback through earlier drafts of the manuscript.

Finally, I wish to thank my wife, Cathy Van Dyke, my best friend and ardent

supporter, whose love, patience, and understanding have helped me get through

some bad times, and enjoy the good.

Happy Haskell Music Making!

Paul Hudak,

January 2012

xvi

www.cambridge.org/9781108416757
www.cambridge.org

