
Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

The Haskell School of Music

This textbook explores the fundamentals of computer music and functional

programming through the Haskell programming language. Functional programming is

typically considered difficult to learn. This introduction in the context of creating

music will allow students and professionals with a musical inclination to leverage their

experience to help understand concepts that might be intimidating in more traditional

computer science settings. Conversely, the book opens the door for programmers to

interact with music by using a medium that is familiar to them.

Readers will learn how to use the Euterpea library for Haskell (www.euterpea.com)

to represent and create their own music with code, without the need for other music

software. The book explores common paradigms used in algorithmic music

composition, such as stochastic generation, musical grammars, self-similarity, and

real-time interactive systems. Other topics covered include the basics of signal-based

systems in Haskell, sound synthesis, and virtual instrument design.

paul hudak was a professor of computer science at Yale University, Connecticut,

from 1982 to 2015. He was best known for his contributions to the development of the

Haskell programming language. A skilled saxophonist and jazz musician, Hudak had

used a combination of his enthusiasm for music and computer science to create the

Euterpea library for representing music in Haskell.

donya quick is Research Assistant Professor of Music and Computation at

Stevens Institute of Technology, New Jersey. Her research explores the intersection of

artificial intelligence and computational linguistics with music, and includes working

on an automated composition system called Kulitta. In addition, she is also involved in

the MUSICA project for interactive improvisation and composition by conversion,

which is part of the DAPRA Communicating with Computers program.
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Preface

There is a certain mind-set, a certain viewpoint of the world, and a certain

approach to problem solving that collectively work best when programming

in Haskell (this is true for any programming paradigm). If you teach only

Haskell language details to a C programmer, he or she is likely to write

ugly, incomprehensible functional programs. But if you teach how to think

differently, how to see problems in a different light, functional solutions will

come easily, and elegant Haskell programs will result.

Music has many ties to mathematics. Combining the elegant mathematical

nature of Haskell with that of music is as natural as singing a nursery tune.

Using a high-level language to express musical ideas is, of course, not new.

But Haskell is unique in its insistence on purity (no side effects), and this alone

makes it particularly suitable for expressing musical ideas. By focusing on

what a musical entity is, rather than on how to create it, we allow musical ideas

to take their natural form as Haskell expressions. Haskell’s many abstraction

mechanisms allow us to write computer music programs that are elegant,

concise, yet powerful. We will consistently attempt to let the music express

itself as naturally as possible, without encoding it in terms of irrelevant

language details.

Of course, the ultimate goal of this book is not just to teach computer music

concepts. Along the way you will also learn Haskell. There is no limit to what

one might wish to do with computer music, and therefore the better you are

at programming, the more success you will have. Many languages designed

specifically for computer music – although fun to work with, easy to use, and

cute in concept – face the danger of being too limited in expressiveness.

You do not need to know much, if any, music theory to read this book, and

you do not need to play an instrument. Of course, the more you know about

music, the more you will be able to apply the concepts learned in this text in

musically creative ways.

xi
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xii Preface

This book’s general approach to introducing computer music concepts is to

first provide an intuitive explanation, then a mathematically rigorous definition,

and finally fully executable Haskell code. It will often be the case that there is

a close correspondence between the mathematical definition and the Haskell

code. Haskell features are introduced as they are needed, rather than all at

once, and this interleaving of concepts and applications makes the material

easier to digest.

Seasoned programmers having experience only with conventional impera-

tive and/or object-oriented languages are encouraged to read this text with an

open mind. Many things will be different, and will likely feel awkward. There

will be a tendency to rely on old habits when writing new programs, and to

ignore suggestions about how to approach things differently. If you can manage

to resist those tendencies, you will have an enjoyable learning experience.

Those who succeed in this process often find that many ideas about functional

programming can be applied to imperative and object-oriented languages as

well, and that their imperative coding style changes for the better.

The experienced programmer should also be patient with earlier topics, such

as “syntax,” “operator precedence,” etc., since the intent is for this text to be

readable by someone having only modest prior programming experience. With

patience, the more advanced ideas will appear soon enough.

If you are a novice programmer, take your time with the book; work through

the exercises, and don’t rush things. If, however, you don’t fully grasp an idea,

feel free to move on, but try to reread difficult material at a later time when

you have seen more examples of the concepts in action. For the most part, this

is a “show-by-example” textbook, and you should try to execute as many of

the programs in this text as you can, as well as every program that you write.

Learn-by-doing is the corollary to show-by-example.

Finally, some section titles are prefaced with the parenthetical phrase

“[Advanced]”. These sections may be skipped upon first reading, especially if

the focus is on learning computer music concepts, as opposed to programming

concepts.

Prerequisites

Basic algebra and familiarity with a terminal-style environment (often called

a command prompt in Windows) on your computer are also assumed as

prerequisites in this text. Some prior introduction to computer science concepts

and data structures (primarily lists and trees) is also strongly recommended.

This book is not a substitute for an introductory music theory course.

Rather, it is intended primarily for programmers with at least a small amount of
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Preface xiii

musical experience (such as having taken a music appreciation course in school

or played an instrument at some point) who want to then explore music in the

context of a functional programming environment. Examples of musical con-

cepts that are considered prerequisites to this text are reading Western music

notation, the naming scheme for musical pitches as letters and octave numbers,

and the major and minor scales. That said, it is certainly not impossible to learn

Haskell and the Euterpea library from this book as a complete musical novice –

but you will likely need to consult other music-related resources to fill in the

gaps as you go along using a dictionary of musical terms. A wide array of

free music theory resources and tutorials for beginners are also freely available

online. Links to some useful music references and tutorials can be found on

the Euterpea website, www.euterpea.com.

Music Terminology

Some musical concepts have more than one term to refer to them, and which

synonym is preferred differs by region. For example, the following terms are

synonyms for note durations:

American English British English

Double whole note Breve

Whole note Semibreve

Half note Minim

Quarter note Crotchet

Eight note Quaver

Sixteenth note Semiquaver

This book uses the American English versions of these musical terms. The

reason for this is that they more closely mirror the mathematical relationships

represented by the concepts they refer to, and they are also the basis for names

of a number of values used in the software this text describes. The American

English standard for naming note durations is both more common in computer

music literature and easier to remember for those with limited musical

experience – who may struggle to remember what a hemidemisemiquaver is.

Software

There are several implementations of Haskell, all available free on the Internet

through the Haskell website, haskell.org. However, the one that has dominated

all others, and on which Euterpea is based, is GHC [1], an easy-to-use and

easy-to-install Haskell compiler and interpreter. GHC runs on a variety of
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xiv Preface

platforms, including Windows, Linux, and Mac. The preferred way to install

GHC is using Haskell Platform [2]. Once Haskell is installed, you will have

access to what is referred to as the Standard Prelude, a collection of predefined

definitions that are always available and do not need to be specially imported.

Two libraries are needed to code along with this textbook: Euterpea and

HSoM. Euterpea is a language for representing musical structures in Haskell,

and many of its features are covered in this book. HSoM is a supplemental

library containing many of the longer code examples in the text and two

additional features: support for modeling musical performance (Chapter 9) and

music-related graphical widgets (Chapter 17).

Detailed setup information for Haskell Platform, Euterpea, and HSoM is

available on the Euterpea website: www.euterpea.com. Please note: software

setup details for Haskell Platform and the Euterpea library varies by archi-

tecture (32-bit vs 64-bit), operating system, and compiler version. As the

exact setup details are subject to change with every new release of Euterpea’s

dependencies, please see www.euterpea.com for the most up-to-date instal-

lation instructions. While most installations go smoothly with the relatively

simple instructions described in the next section, there are many potential

differences from one machine to another that can complicate the process.

The Euterpea website also contains troubleshooting information for commonly

encountered installation problems.

Installation Instructions

The following setup instructions require an Internet connection.

• Download the appropriate version of Haskell Platform from

www.haskell.org/platform/ and install it on your machine.

• Open a command prompt (Windows) or terminal (Mac/Linux) and run the

following commands:

cabal update

cabal install Euterpea

cabal install HSoM

• Mac and Linux users will also need to install a MIDI software synthesizer.

Please see the Euterpea website for instructions on how to do this.

The Euterpea website also contains basic walkthroughs for getting started

working with the GHC compiler and interpreter within a command prompt or

terminal, loading source code files, and so on.
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Quick References

Brief references for the more commonly used features of Haskell, Euterpea,

and HSoM are listed in Appendices E, F, and G. These are intended to serve as

a fast way to look up function and value names when you already know a bit

about how to use them. A note to students: these few pages of ultra-condensed

material are not a substitute for reading the chapters!

Coding and Debugging

Errors are an inevitable part of coding. The best way to minimize the number

of errors you have to solve is to code a little bit and then immediately test

what you’ve done. If it’s broken, don’t wait – fix it then and there! Never press

onward and try to work on other things within a file that is broken elsewhere.

The reason for this is that one simple error can end up masking others. When

the compiler hits a serious problem, it may not even look at the rest of your file.

As a result, continuing to code without resolving error messages often results

in an explosion of new errors once the original one is fixed. You will save

yourself a lot of grief by developing good habits of incremental development

and not allowing errors to linger unsolved.

Coding style is also important. There are two reasons for this in Haskell.

The first is that Haskell is extremely sensitive to white space characters. Do

not mix spaces and tabs! Pick one and be consistent (spaces are typically

recommended). Indentation matters, and a small misalignment can sometimes

cause bizarre-looking error messages. Style is important, as is readability,

both by other programmers and by yourself at a later date. Many novice

programmers neglect good coding hygiene, which involves naming things

well, laying out code cleanly, and documenting complicated parts of the code.

This extra work may be tedious, but it is worthwhile. Coding large projects

is often very much dependent on the immediate state of mind. Without that

frame of reference, it’s not impossible that you could find your own code to be

impenetrable if you pick it up again later.
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