Index

abundance–distribution relationship, 204
active adaptive management, 482
adaptive cycle, 457–459, 516
complex system dynamics, 458
four phases, 458
adaptive management, 459, 481–482
adaptive systems. See Complex Adaptive Systems
aggregation, 7, 10–144
definition, 10
Akeroyd, J.R., 389
Allen, Timothy F.H., 14, 33
allometric scaling, 271–272
Alpha diversity, 148
American Association for the Advancement of Science (AAAS), 414
Anthropocene, 415
applied ecology, 391–392 See also global change science
Aristotle, 150
ascendancy, 152
Ashby, Roy, 151, 527
Atlan, Henri, 153
atmospheric dynamics, 316–317
balance of nature, 348, 388
Baranger, Michiel, 284
Basore, Bennett, 153
Bejan, Andrei, 226
Bertalanffy, Ludwig von, 150, 225
Beta diversity, 148
“Beyond global warming” (Vitousek), 393, 394
bifurcations, and complexity, 287–288
biodiversity, loss of, 349
biogeochemistry, 236–237
biogeography
island, 204, 286, 422, 435
southwest American oaks, 316–317
biological invasions, 394
biological stoichiometry, 371
Boltzmann, L., 221, 226
Botkin, Daniel, 348
Britain, crop production, 395
Brown, James H., 2, 6, 209, 225, 271
Brundtland Commission, 73
budworm system, 460
Buell, Fredrick, 389
Burke, Indy, 236
butterfly effect, 283
Cairns, J.C., 349
Carnot, Sadi, 226
Carpenter, Stephen R., 47, 99, 225, 253, 254, 460, 518, 541, 568
Carson, Rachel, 223
cascading lake interactions, 253–255
Caswell, Hal, 348
category theory, 33
cellular processes, 370–372
chaos. See also complexity and complexity, 284–285
dehors of chaos concept, 261, 278
in ecological systems, 340–341
chaos theory, 34, 278, 348
Checkland, Peter, 515
Chesson, Peter, 349
citizen scientists, 519
Clark, William C., 46, 73
climatic change, 73–74
crop production and, 395
non-equilibrium and, 349
Paris 2015 Agreement, 415
Club of Rome, 540
C-N-P stoichiometry, 371
Cohen, Joel, 391
Collins, Scott, 98, 203, 316
comics theory, 517, 526
comparative exclusion, 168, 260, 348
complementary models for ecosystems, 236–238
Complex Adaptive Systems, 6our fundamental properties, 7
scale and, 48
six core properties, 6
complex ecology, 4–7 See also complexity, ecology
complex emergent interactions, 97
cross-scale dynamics, 98–100
complexity, 567–568
adaptive cycle metaphor, 458
aggregation and, 7, 10–144
applied applications, 388–392
bifurcations, in ecological models, 287–288
chaos and, 284–285
designing and governing, 526–527
diversity and, 7, 148–216
flows and, 7, 220–278, 388
functional, and ecosystem stability, 158–159
issue of, 1, 5
non-linearity and, 7, 283–384
science and, 284
social context of, 514–541
stability and self-organization, 152–153
thermodynamics of, 225–227
uncertainty and, 518–521
conditional entropy, 153
connectivity
importance of, 424
over-connectivity, 458
Connell, Joseph, 260
conservation
equilibrium and, 389
social context of, 392, 514–541
stability in, 220
conservation biology, 392, 421–452
conservation phase, 458
constructual law, 226
control theory, 459
crean, 15
creative destruction, 458
crop production, 395
cross-scale interactions, 12, 98–100, 143
cybernetics, 149, 150–152, 391
Danielson, Brent, 424
dephication, 371
Darwin, Charles, 12
On the Origin of Species, 148
DeAngelis, Don, 237, 271, 348, 518, 541
decision stakes, 519
decomposers, 222
deferred action, 481
deforestation, 458
density vagueness, 348
Diamond, Jared, 423
discontinuities in scaling, 284
disequilibrium, 348–350, 388–390
disorder, order from, 225–227
distribution–abundance relationship, 204
disturbance
ecosystem, 11
intermediate disturbance, 260, 348
intertidal landscapes, 168–169
diversity, 7, 148–216
Alpha, Beta and Gamma, 148
loss of biodiversity, 349
stability and, 149–150
Dobberfuhl, Dean R., 370
double helix model, 33
Dual Control Theory, 459
Earth Day, 223
East African grazing systems, 517
ecological economics, 520
ecological models
alimentic scaling, 271–272
bifurcations and complexity in, 287–288
complementary, 236–238
equilibrium/non-equilibrium concepts in, 348–350
ecological research management, 33–34
ecological stoichiometry, 371
ecology. See also landscape ecology
applied and academic, 391–392
diversity and stability in, 149–150
evolutionary, 421, 435
holoecology, 15
macroecology, 209–210
metabolic theory of, 272
optimization, 481–482
patterns and scale in, 47–48
reductionist vs holistic, 390–391
resilience, 457–482
restoration ecology, 349
stability in, 220
ephysiology, 393
ecosystem engineering, 394
ecosystems
chaos in, 340–341
complementary models for, 236–238
complexity, stability and self-organization, 152–153
cross-scale dynamics, 98–100
disturbance to, 11
first coinge of term, 391
flows in, 220–224
fragmentation, 422, 434–436
functional complexity and stability, 158–159
human impact on global ecosystems, 414–415
lake systems, 371
organism size, life history and N-P stoichiometry, 370–372
Eddington, Sir Arthur, 225
dge of chaos concept, 261, 278
Ehrenfels, Christian von, 150
Elser, James J., 370
Elton, Charles, 221, 391, 394
Emanuel, William R., 158
emergent properties, complex systems, 97–100
endangered species, 423
energy, flows in, 220–224, 389
Enquist, Brian J., 225, 271
entropy, conditional, 153
environment. See also ecology, ecosystems
nine environmental processes, 349
property rights and, 526–527
systems approach to, 14–15
environmental policy, 389
environ, 14
input and output, 15
equilibrium, 388–390
in ecological models, 348–350
evapotranspiration, 395
evolutionary ecology, 421, 435
externalists, 567
extinction debt, 423, 424, 451–452
“eyes paper”, 33
Fath, Brian, 15
feedback loops, 158, 159
negative, 516
positive, 517
Fel'dbaum’s Dual Control Theory, 459
fires, wildfires, 11, 12, 285, 458
fishery management, 254, 415, 458, 459, 517
Flaschka, Hermann, 341
Fließgleichgewicht (flowing balance), 225
flows, 7, 220–278, 388
energy and ecosystems, 220–224
food pyramid, 221
Forbes, Stephen, 221
forests, adaptive cycle, 458
Forrester, Jay, 540
fractals, 272, 278, 284
fragmentation
ecosystems, 422, 434–436
habitats, 422
functional complexity, 158–159
Funtowicz, Silvio O., 516, 518
Gafta, D., 389
Galapagos finches, 148
Gallagher, Richard, 414
Gamma diversity, 148
Gardner, Bob, 434
Garfield, Eugene, 4
Gell-Mann, Murray, 261
Genon, 15
German intellectual movements, 13, 150, 458
global change science, 393–415, 518 See also climate change
Gluckman, Professor Sir Peter, 520
government
complexity, 526–527
decision making, 516
environmental policy, 389
power relationships, 516
gradients, dissipation, 226
greenhouse effect, 34
Greek philosophers, 148, 150, 220
Grinnell, J., 316
Growth Rate Hypothesis (GRH), 372
Gyllenberg, Mats, 203
habitats
destruction, 423, 451–452
fragmentation, 422
Hanski, Ilkka, 203, 424
hard systems, 515
Hardin, Garrett, 526
healthy functioning, 515
Heraclitus, 220
hierarchy, 11, 13–14, 143
foundations of, 13
interlevel relations, 33–34
systems approach, 14–15
Hilborn, Ray, 459, 481, 527
Hitchhiker’s Guide to the Galaxy (Adams), 148
Hobbs, Richard J., 434
Hodgson, James R., 253
Hoekstra, Thomas W., 14, 33
holistic approach, 2, 143, 151, 210, 216, 223, 372, 390–391
Holland, J., 7
Holling, Crawford S., 2, 6, 10, 97, 98, 149, 568
on adaptive cycle, 459
on Carpenter, 254
on resilience, 457, 460
holoecology, 15
holon, 15
Holt, Bob, 424
Hubbell, Stephen, 348
human impact, global ecosystems, 414–415
Hurlbert, Stuart H., 254
iguanas, 317
innovation, and rigor, 568
interlevel relations, 33–34
intermediate disturbance theory, 260, 348
internalists, 567
intertidal landscapes, 168–169
island biogeography, 204, 286, 422, 435
Janzen, Daniel, 423
Jobs, Steve, 317
Judy, Chancey, 221
Kant, Immanuel, 150
Kay, James J., 224, 225, 388, 457
Kitchell, James F., 253
Koch diagram, 284
Koestler, Arthur, 13, 15
Kot, Mark, 340, 348
Krebs cycle, 390
Krebs, Hans, 390
Kuhn, Thomas, 518, 567
Index

lake systems, 253–255, 371
“land ethic” (Leopold), 222, 388, 514
land pyramid, 222
landscape approach to conservation, 434
landscape ecology, 74, 168
intertidal, 168–169
lake systems, 253–255, 371
species distribution, 203–205
Law of Medium Numbers, 285
Leopold, Aldo, 222, 223, 253, 391, 436, 459, 567
“land ethic”, 222, 388, 514
leverage points, 517, 540–541
Levin, Simon, 3, 6, 46, 47, 168
Levins, Richard, 34
Li, Bai-Lian, 423, 451
life history, organisms, 370–372
Limits to Growth, 540
Lindeman, Raymond, 222, 237
living dead species, 423, 451
Loochle, Craig, 423, 451
Lorenz, Edward, 283
loss of resilience, 461
Lotka, Alfred, 221
Lovelock, James, 517
N-P stoichiometry, 370–372
Ludwig, Donald, 224, 460
MacArthur, Robert, 6, 100, 153, 391, 422, 568
Mackay, Neil A., 370
macroecology, 209–210
Maine lobster fishery, 517
management
adaptive, 459, 481–482
four pathways of, 482
three approaches to, 481
Mandelbrot, Benoît, 34, 271, 284
Manley, B.F., 99
Margules, Chris R., 434
marine systems. See also fishery management
loss of diversity, 151
Marquet, Pablo, 2
Marsh, George Perkins, 414
Maurer, Brian A., 209
Maximum Power paradigm, 222, 223
May, Robert, 149, 152, 168, 287, 341, 348, 383, 392, 422, 451
McCann, K.S., 150
Meadows, Donella, 517, 540
mechanistic analysis, 393
medium number systems, 285–286
Melillo, Jerry M., 414
Merchant, Carolyn, 4, 260, 392
metabolic theory of ecology (MTE), 272
metapopulation concept, 203, 204, 287
microcosms, and whole lake experiments, 253
modernism, 520
Munteith, John L., 393, 395
Mooney, Hal A., 414
morphology
cross-scale, 98–100
organisms, 370–372
Mullholland, Robert, 153
Myrica faya, 394
Mytilus californianus (mussel), 168
negative feedback loops, 516
Neilson, Ronald P., 316
net primary productivity (NPP), 395
networks, organization of, 15
New Biology, 372, 383
New Orleans, flood control, 516
niche, concept of, 422
Nicolis, G., 225, 227
Nietsche, Friedrich, 458
nitrogen-fixing, 394
non-equilibrium, 388–390
in ecological models, 348–350
non-linearity, 7, 283–384
Norman, John, 395
N-P stoichiometry, 370–372
nucleation site, 286
NUSAP system, 519
O’Neill, Robert V., 13, 14, 33, 158, 224
oaks, southwest American, 316–317
Occam’s Razor, 317
Odum, Eugene, 2, 14, 222, 223, 225, 260
Odum, Howard, 15, 222, 225, 260
Odum, William E., 225, 260
optimization, ecological, 481–482
order from disorder, 225–227
organisms, size, life history and N-P stoichiometry, 370–372
On the Origin of Species (Darwin), 148
Oster, George F., 287
Ostrom, Elinor, 516, 526
over-connectivity, 458
Overton, Scott, 15
Paine, Robert T., 168, 254
Paris Agreement on Climate Change2015, 415
passive adaptation, 481
patch dynamics, 169, 204, 261, 459
Patten, Bernard C., 14
pattern
distribution of species, 203–205
in ecology, 47–48
intertidal landscapes, 168–169
peer community, extended, 519
Penman-Monteith equation, 395
perception, 10, 11
perspective
hierarchy and, 13–14
scale interaction, 97, 143, 514
Index 573

Peterson, Garry, 73
physics envy, 391
Pinkerton, Richard, 222
Planck, Max, 150
Poincaré, Henri, 283
Polanyi, Michael, 518
population metapopulation concept, 203, 204, 287
regulation, 422, 423–424
Porter, Warren, 317
positive feedback loops, 517
post-normal science (PNS), 518–521
power law, 271
Prentice, Colin, 316
Prigogine, Ilya, 225, 227
primary succession, 458
problem solving, 11
professional consultancy, 519
property rights, 526–527
Pulliam, Ronald, 422, 423
pulsing paradigm, 225, 260–262
quadrant-rainbow, 519
quadrat, 46
rapid growth phase, 458
Ravetz, Jerome R., 516, 518
Real, Leslie, 2
Redfield, A.C., 371
reductionism, 13, 33, 143, 210, 216, 223, 284, 372, 390–391
Reiners, William A., 224, 236
remote sensing, 392, 393, 395
renewal phase, 458
requisite variety, 151, 527
resilience, 457
loss of, 461
sustainability and stability, 460–461
resilience science, 392, 457–482
restoration ecology, 349
ribosomal RNA, 372
rigor, and innovation, 568
Rittel, H.W.J., 515
Robert H. MacArthur Award, 46, 48
Robinson, S.K., 422
Rosenzweig, Michael, 422
Russian dolls, 13
Rutledge, Robert, 153
Saunders, Denis A., 422, 434
savanna system, 460
scale, 11
allometric scaling, 271–272
climate change, 73–74
cross-scale interactions, 12, 98–100, 143
fractal geometry and, 284
grain and extent, 34
implications of, 45–47
in ecology, 47–48
perspective interaction, 97, 143, 514
significant papers on, 46
Schaffer, William M., 340, 348
Schumpel, John H., 370
Schneider, Eric D., 224, 225
Schön, Donald, 515
Schrödinger, Erwin, 225
Schumpeter, Joseph, 458
science complexity and, 284
post-normal, 518–521
social context, 392
sustainability, 73
trans-science, 519
use-inspired, 415
Sears, Paul, 391, 414
self-organization, 152–153
sensitivity to initial conditions, 284
Shannon–Wiener index, 153
Shugart, Herman H. Jr., 158
Simon, Herbert, 13
sinks and sources, 422, 423–424
Smith, Greig, 46
social context, 392, 514–541
social media, 519
soft systems, 515
Sombart, Werner, 458
Soulé, Michael, 391
sources and sinks, 422, 423–424
species distribution patterns, 203–205
endangered, 423
living dead, 423, 451
species–area relationship, 204, 422
Square Law of Computation, 285
Square Root of N Law, 285
stability and diversity in ecology, 149–150
complexity and self-organization, 152–153
functional complexity and, 158–159
in ecology and conservation, 220
sustainability and resilience, 460–461
Sterner, Bob, 238
stoichiometry, 236, 238
biological, 371
ecological, 371
N-P, 370–372
Stommel diagrams, 47, 74
Strong, Don, 348
succession, classic model of, 457
surprise events, 458, 459
sustainability science, 73
stability and resilience, 460–461
UN Sustainable Development Goals, 415
Index

Swinney, Harry, 341
systems approach, environment, 14–15
systems ecology, 222
systems theory, 151, 285, 391, 540–541
medium number systems, 285–286
systems thinking, 152–153, 517
systems uncertainties, 519
Tansley, Arthur, 221, 391
Theory of Island Biogeography (MacArthur and Wilson), 286
thermodynamics
complexity, 225–227
laws of, 223
second law of, 225, 226
stoichiometry and, 236
thresholds, 286
crossing, 13
Tilman, G. David, 423, 451
times speed regulator principal, 222
Tracy, Richard, 317
Tragedy of the Commons (Hardin), 526
Transeau, E.N., 221
trophic cascades, 253–255
trophic dynamic approach, 222
trophic levels, 221
Turnpenny, J., 519, 520
Übermensch, 458
Uexküll, Jakob von, 10
Ulanowicz, Robert E., 152
Umwelt, 10
UN Sustainable Development
Goals, 415
uncertainty, 10, 389, 481, 482, 518–521, 541
use-inspired science, 415
Vitousek, Peter, 393–394, 414, 518
Voris, Peter Van, 158
Walker, Brian, 460
Walters, Carl, 459, 481, 527
Waterhouse, Joyce C., 348
Watt, A.S., 46
Watt, Kenneth, 6
weather simulations, 283, 284, 288
Weaver, Warren, 284, 388
Webber, M.M., 515
Weinberg, Alvin, 519
Weinberg, Gerald, 285
Weiss, Paul, 150
West, Geoffrey B., 225, 271
Wiens, John, 209, 253, 423, 434
Wilson, E.O., 449, 422
Woodward, Ian, 395
world is green hypothesis, 253
Wullstein, L.H., 316
Yellowstone National Park, 11, 458
zombie species, 451