

Prioritizing Development

This book is a unique guide to making the world a better place. Experts apply a critical eye to the United Nations' Sustainable Development agenda, also known as the Global Goals, which will affect the flow of \$2.5 trillion of development aid up until 2030.

Renowned economists, led by Bjorn Lomborg, determine what pursuing different targets will cost and achieve in social, environmental, and economic benefits. There are 169 targets, covering every area of international development – from health to education, and from a sanitation to conflict.

Together, these analyses make the case for prioritizing the most effective development investments. A panel of Nobel Laureate economists identify a set of nineteen phenomenal development targets and argue that this would achieve as much as quadrupling the global aid budget.

BJORN LOMBORG is the President of the Copenhagen Consensus Center and a visiting professor at the Copenhagen Business School. He researches the smartest ways to do good, for which he was named one of *Time* magazine's 100 most influential people in the world. His numerous books include *The Skeptical Environmentalist* (Cambridge, 1998), *Cool It* (2010), *How to Spend \$75 Billion to Make the World a Better Place* (2014), and *The Nobel Laureates' Guide to the Smartest Targets for the World 2016–2030* (2015).

Prioritizing Development

A Cost Benefit
Analysis of the
United Nations'
Sustainable
Development Goals

Edited by

BJORN LOMBORG
Copenhagen Business School

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108415453

DOI: 10.1017/9781108233767

© Copenhagen Consensus Center 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018 Reprinted 2020

A catalogue record for this publication is available from the British Library

ISBN 978-1-108-41545-3 Hardback ISBN 978-1-108-40145-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of Figures x
List of Tables xiii
List of Boxes xix
List of Contributors xx
Foreword: Why Measurement of
Costs and Benefits Matters for the SDG
Campaign xxiv
Stefan Dercon and Stephen A. O'Connell

Introduction 1
Bjorn Lomborg

- Benefits and Costs of Air Pollution Targets for the Post-2015 Development
 Agenda 13
 Bjorn Larsen
 1.1 ALTERNATIVE PERSPECTIVE
 Mike Holland 35
 1.2 ALTERNATIVE PERSPECTIVE
 Marc Jeuland 37
- 2 Targets for Biodiversity and Deforestation 38
 Anil Markandya
 2.1 ALTERNATIVE PERSPECTIVE
 Luke Brander 50
 2.2 ALTERNATIVE PERSPECTIVE
 Alistair McVittie 52
- 3 Benefits and Costs of the Climate Change
 Targets for the Post-2015 Development
 Agenda 54
 Isabel Galiana
 3.1 ALTERNATIVE PERSPECTIVE
 Robert Mendelsohn 64
 3.2 ALTERNATIVE PERSPECTIVE
 Carolyn Fischer 66

v

vi Contents

- 4 Beyond Civil War: The Costs of Interpersonal Violence 67

 James Fearon and Anke Hoeffler
 4.1 ALTERNATIVE PERSPECTIVE
 S. Brock Blomberg 89
 4.2 ALTERNATIVE PERSPECTIVE
 Rodrigo R. Soares 90
- 5 Data Revolution: The Cost and Benefit of Data
 Needed to Monitor the Post-2015 Development
 Agenda 91
 Morten Jerven
 5.1 ALTERNATIVE PERSPECTIVE
 Deborah Johnston 117
 5.2 ALTERNATIVE PERSPECTIVE
 Gabriel Demombynes and Justin Sandefur 118
- 6 Benefits and Costs of the Education Targets for the Post-2015 Development Agenda 119

 George Psacharopoulos
 6.1 ALTERNATIVE PERSPECTIVE

 Caroline Krafft and Paul Glewwe 141
 6.2 ALTERNATIVE PERSPECTIVE

 Peter F. Orazem 142
- 7 Benefits and Costs of the Energy Targets for the Post-2015 Development Agenda 143
 Isabel Galiana
 7.1 ALTERNATIVE PERSPECTIVE
 Adele Morris 168
 7.2 ALTERNATIVE PERSPECTIVE
 Madeleine Gleave and Todd Moss 170
- 8 Benefits and Costs of the IFF Targets for the Post-2015 Development Agenda 171
 Alex Cobham
 8.1 ALTERNATIVE PERSPECTIVE
 Peter Reuter 189
 8.2 ALTERNATIVE PERSPECTIVE
 Dev Kar and Tom Cardamone 191
- 9 Benefits and Costs of the Trade Targets for the Post-2015 Development Agenda 192

 Kym Anderson
 9.1 ALTERNATIVE PERSPECTIVE

 Bernard Hoekman 216
 9.2 ALTERNATIVE PERSPECTIVE

 Patrick Low 217

Contents vii

- Benefits and Costs of the Health Targets for the Post-2015 Development Agenda 219 Prabhat Jha, Ryan Hum, Cindy L. Gauvreau, and Keely Jordan
- Benefits and Costs of the Noncommunicable
 Disease Targets for the Post-2015 Development
 Agenda 231
 Rachel Nugent and Elizabeth Brouwer
- 12 Benefits and Costs of the Women's Health Targets for the Post-2015 Development Agenda 244

 Dara Lee Luca, Johanne Helene Iversen,

 Alyssa Shiraishi Lubet, Elizabeth Mitgang,

 Kristine Husøy Onarheim, Klaus Prettner,

 and David E. Bloom
- Benefits and Costs of TB Control for the Post-2015
 Development Agenda 255
 Anna Vassall
- Benefits and Costs of the Infant Mortality Targets for the Post-2015 Development Agenda 266
 Günther Fink
- Benefits and Costs of the HIV/AIDS Targets for the Post-2015 Development Agenda 277
 Pascal Geldsetzer, David E. Bloom,
 Salal Humair, and Till Bärnighausen
- Benefits and Costs of the Malaria Targets for the Post-2015 Consensus Project 287Neha Raykar
- 17 Benefits and Costs of Digital Technology:
 Infrastructure Targets for the Post-2015
 Development Agenda 295
 Emmanuelle Auriol and Alexia Lee González
 Fanfalone
 17.1 ALTERNATIVE PERSPECTIVE
 Pantelis Koutroumpis 320
- 18 Returns to Investment in Reducing Postharvest
 Food Losses and Increasing Agricultural
 Productivity Growth 322
 Mark W. Rosegrant, Eduardo Magalhaes, Rowena
 A. Valmonte-Santos, and Daniel Mason-D'Croz
 18.1 ALTERNATIVE PERSPECTIVE
 Christopher B. Barrett 337

viii Contents

- Benefits and Costs of the Gender Equality Targets for the Post-2015 Development Agenda 339
 Irma Clots-Figueras
 19.1 ALTERNATIVE PERSPECTIVE
 Elissa Braunstein 364
 19.2 ALTERNATIVE PERSPECTIVE
 Joyce P. Jacobsen 366
- Benefits and Costs of the Food and Nutrition
 Targets for the Post-2015 Development
 Agenda 367
 Susan Horton and John Hoddinott
- 21 Benefits and Costs of the Population and Demography Targets for the Post-2015 Development Agenda 375

 Hans-Peter Kohler and Jere R. Behrman 21.1 ALTERNATIVE PERSPECTIVE David Canning 395

 21.2 ALTERNATIVE PERSPECTIVE Gregory Casey and Oded Galor 397
- 22 Benefits and Costs of Two Science and Technology Targets for the Post-2015 Development Agenda 399

 Keith E. Maskus
 22.1 ALTERNATIVE PERSPECTIVE Kamal Saggi 419
 22.2 ALTERNATIVE PERSPECTIVE Pamela Smith 420
- 23 Global Benefits and Costs of Achieving
 Universal Coverage of Basic Water and
 Sanitation Services as part of the 2030 Agenda
 for Sustainable Development 422
 Guy Hutton
 23.1 ALTERNATIVE PERSPECTIVE
 Dale Whittington 443
 23.2 ALTERNATIVE PERSPECTIVE
 Dale Whittington 444
- 24 Benefits and Costs of the Poverty Targets for the Post-2015 Development Agenda 446

 John Gibson
 24.1 ALTERNATIVE PERSPECTIVE

 Guarav Datt 473
 24.2 ALTERNATIVE PERSPECTIVE

 Valerie Kozel 474

Contents ix

Good Governance and the Sustainable
 Development Goals: Assessing Governance
 Targets 475
 Mary E. Hilderbrand
 25.1 ALTERNATIVE PERSPECTIVE
 Aart Kraay 497
 25.2 ALTERNATIVE PERSPECTIVE
 Matt Andrews 499

Conclusion 501
Identifying Phenomenal Development
Targets 501
Finn Kydland, Tom Schelling, and Nancy Stokey
How to Implement the Global Goals, Knowing
What Does a Lot of Good and What
Doesn't 504
Bjorn Lomborg

Index 508

Figures

I.1	Social, economic, and environmental		6.8	Moving toward the zero-target of	
	benefits for every dollar spent pag	e 10		primary school coverage	129
1.1	Health effects of long-term PM2.5		6.9	The marginal cost of schooling	
	exposure	18		increases with enrollment	129
3.1	Cost distributions for six cases with		6.10	Benefit-cost ratio, discount rate, and	
	varying future availability of specific			rate-of-return relationship	136
	mitigation technologies	59	7.1	Non-OECD energy consumption	
4.1	Homicides in low- and middle-income			(quadrillion Btu) by country	
	countries	68		grouping	145
4.2	Violence in low- and middle-income		7.2	World energy consumption	
	countries	68		(quadrillion Btu)	146
4.3	Global child and young adult		7.3	Estimates of universal	
	homicide rates	71		electrification costs	149
4.4	Child homicides (0–14 years) as a		7.4	Energy efficiency outlook	152
	percentage of total homicides	71	7.5	Cumulative global energy efficiency	
4.5	Percent of primary caregivers using			investment by end-use sector in	
	severe physical punishment	72		the new policies scenario	
4.6	Percentage of women married at 18	74		2014–2035	153
4.7	Percentage of women married at 15	74	7.6	Cost curves of improving access to	
4.8	Prevalence rates of IP assault	76		modern cooking fuels under differing	
4.9	Prevalence of female genital			levels of fuel price support and	
	mutilation	77		microfinance loans	160
4.10	Crime prevention aid and		8.1	Stylized representation of major	
	homicide rates	79		IFF types	172
4.11	Prevalence of FGM by age	81	8.2	Ratio of average IFF to GDP,	
4.12	Civil war trends	82		1980–2009	176
6.1	Typical age-earnings profiles by		12.1	The HPV virus family, comprised of	
	level of education	120		more than 100 related viruses, and	
6.2	Flat age-earnings profiles	121		the health complications specific to	
6.3	A grand summary of education			oncogenic and nononcogenic types,	
	investment returns	126		respectively	246
6.4	Net primary enrollment ratio trend		14.1	Causes of under-five mortality	267
	by region	126	14.2	Changes in infant mortality,	
6.5	Net secondary enrollment			1990–2013	268
	ratio (%)	127	14.3	Annual rates of improvements	
6.6	Out-of-school children of lower			in infant mortality, 1990-2013,	
	secondary age	127		versus infant mortality in 1990	269
6.7	Tertiary education gross enrollment		14.4	Physician density and infant mortality	
	ratio by region	128		rates in low and middle income	272

X

Frontmatter More Information

				List of Figures	X1
15.1	Diagrammatic summary of		20.1	Trends in adult male height (in cm),	
	the model	279		representative countries from	
17.1	Mobile-cellular subscriptions per			North America and Northern,	
	100 inhabitants (mobile voice			Southern, and Eastern Europe,	
	penetration)	296		1900–2000	369
17.2	Analytical framework to assess the		20.2	Trends in adult male height (in cm),	
	impact of broadband on the			representative countries from South	
	economy	297		America, 1900–2000	369
17.3	Broadband penetration rates by		20.3	Trends in adult male height (in cm),	
	speed tiers, 2012	298		representative countries from Asia,	
17.4	Percentage of households with			1900–2000	370
	Internet access at home	299	20.4	Wage path for children born in 2010	
17.5	Mobile broadband subscriptions			who are not stunted, compared to	
	per 100 inhabitants	299		those stunted	371
17.6	Percentage increase of GDP for each		20.5	Benefit-cost ratio for nutrition	
	10 percent increase in broadband			investments, 17 countries	372
	penetration	301	21.1	Percentage of women with an	
17.7	Elements of a broadband			unmet need for family planning	
	network, access, and core/backhaul			(any method) among those ages	
	network	302		15–49 who are married or in a	
18.1	Mean losses by region and type			union: Most recent	
	of loss	327		data available	378
18.2	Box plots of postharvest losses by	52.	21.2	Migration stock and flow across	0.0
10.2	type of loss and region	328	21.2	regions defined by economic	
18.3	Mean losses by type of loss and	320		development, late 2000s	384
10.5	commodity	329	23.1	Benefit breakdown for delivering	301
19.1	Female-to-male ratio in primary	32)	23.1	universal access to basic water	
17.1	education enrollment	340		supply in urban areas	435
19.2	Female-to-male ratio in secondary	340	23.2	Benefit breakdown for delivering	433
19.2	education enrollment	340	23.2	universal access to basic sanitation	
10.2		340			127
19.3	Female-to-male ratio in tertiary	2.41	24.1	in urban areas	437
10.4	education enrollment	341	24.1	The uneven escape from extreme	
19.4	Ratio of female-to-male labor force	241		poverty around the world: Africa	4.40
10.5	participation rate (ILO)	341	242	lagging	449
19.5	Maternal mortality rates (per 100,000	2.42	24.2	Overstated hunger from short	4.7.1
	live births)	342		reference period surveys	451
19.6	Percentage of the population with		24.3	Declining effectiveness of growth in	
	access to an improved water			reducing poverty as poverty falls,	
	source	342		Vietnam, 2002–2010	453
19.7	Adolescent fertility rate (births per		24.4	Changing importance of ingredients	
	1,000 women ages 15–19)	346		and eating out in household food	
19.8	Percentage of women in national			consumption	454
	parliaments	352	24.5	Overstated spatial inequality	
19.9	Labor force participation rate for			in China's GDP per capita,	
	ages 15-24, female (%) (modeled			2010	455
	ILO estimate)	355	24.6	Agricultural productivity jumps after	
19.10	Adolescent fertility rate (births			household responsibility system	
	per 1,000 women ages 15-19)	355		reforms in China	457

xii List of Figures

Falling inequality as China		24.9		
abandoned conective			poverty status, 2012 (IIIIIIoii VIV	
farming	458		dong, in December 2012 prices)	462
Changing composition of poverty		C.1	Efficiency of prioritizing targets	505
as countries escape mass poverty,		C.2	Social, economic, and environmental	
Vietnam, 1993–2010	460		benefits for every dollar spent	506
	abandoned collective farming Changing composition of poverty as countries escape mass poverty,	abandoned collective farming 458 Changing composition of poverty as countries escape mass poverty,	abandoned collective farming 458 Changing composition of poverty as countries escape mass poverty, C.2	abandoned collective poverty status, 2012 (million VN dong, in December 2012 prices) Changing composition of poverty as countries escape mass poverty, C1 Efficiency of prioritizing targets C2 Social, economic, and environmental

Tables

1.1	Millennium development goals:		1.18	Benefit-cost ratios of household air	
	The seven key targets	page 4		pollution control targets using	
1.1	Population exposure to ambient			DALY = US\$5,000 for health	
	PM2.5 air pollution	14		valuation	24
1.2	Populations using solid fuels	15	1.19	Regional PM2.5 ambient air	
1.3	Urban and rural solid fuel use, 2012	15		pollution targets (annual maximum)	25
1.4	Household air pollution control		1.20	Health benefits of meeting PM2.5	
	targets	17		ambient air quality targets	
1.5	Long-term personal exposure to			(% reduction in current health	
	PM2.5 from household fuel use			effects)	25
	$(\mu g/m^3)$	17	1.21	Estimated annual health effects	
1.6	Levels of long-term personal			of PM2.5 ambient air pollution	
	exposure to PM2.5 from household			exposure	25
	fuel use $(\mu g/m^3)$	18	1.22	Valuation of mortality and	
1.7	Health effects of long-term PM2.5			morbidity, 2012 (US\$)	26
	exposure	18	1.23	Annual cost of health effects of	
1.8	Estimated annual health effects of			outdoor ambient PM2.5 exposure,	
	household air pollution exposure	19		2012 (US\$ billion)	27
1.9	Valuation of mortality, 2012 (US\$)	19	1.24	Cost of PM2.5 abatement from	
1.10	Valuation of morbidity, 2012 (US\$)	19		household energy (US\$/ton of	
1.11	Annual cost of health effects of			PM2.5)	28
	household air pollution exposure,		1.25	Cost of PM2.5 abatement	
	2012 (US\$ billion)	20		from improved solid waste	
1.12	Value of solid fuel savings of			management	28
	switching to improved cookstove or		1.26	Cost of PM2.5 abatement from	
	LPG, 2012 (US\$/household/year)	20		using ultra-low sulfur diesel	
1.13	Value of cooking time savings,			(50 ppm) for road vehicles	28
	2012 (US\$/household/year)	20	1.27	Cost of PM2.5 abatement from	
1.14	Estimates of unit costs, 2012	21		DPF retrofitting of in-use diesel	
1.15	Global benefit-cost ratios of househol	d		vehicles (US\$/ton)	29
	air pollution control targets	22	1.28	Annual global benefits of reaching	
1.16	Benefit-cost ratios of household air			the PM2.5 targets, 2012	
	pollution control targets using VSL			(billion US\$)	29
	for health valuation	23	1.29	Benefits of PM2.5 emissions	
1.17	Benefit-cost ratios of household air			reductions (US\$/ton)	30
	pollution control targets using		1.30	Benefit-cost ratios of household	
	DALY = US\$1,000 for health			use of improved biomass cookstoves	
	valuation	23		(ICS) and LPG, 2012	30

xiii

xiv List of Tables

1.31	Benefit-cost ratios of household use		4.6	Cost of female homicide	75
	of improved coal cookstoves (ICS)	31	4.7	Cost of female homicides by	75
1 22	and LPG in East Asia, 2012	31	4.0	intimate partners	75
1.32	Benefit-cost ratios of improved solid	2.1	4.8	Cost of intimate partner assault	76
1 22	waste management, 2012	31	4.9	Cost of reported cases of sexual	7.0
1.33	Benefit-cost ratios of ultra-low sulfur		4.10	violence	76
	diesel fuel (ULSD) for road	2.1	4.10	Sectoral shares of development	70
	vehicles, 2012	31		assistance (% of total aid)	78
1.34	Benefit-cost ratios of DPF retrofitting		4.11	Aid shares (percentages) within the	
	of in-use vehicles, 2012	32		"Government and Civil Society"	
2.1	Aichi Targets: Qualitative assessment			category, 2000–2010	79
	of benefits and costs	39	4.12	Annual change in percent with war,	
2.2	Aichi strategic goals and targets and			1990–2012	82
	associated investment costs	42	4.13	Percentage of countries with war,	
2.3	Net benefits from Target 5:			actual 2012 and 2030 by trend	82
	50 percent reduction in global		4.14	Percentage of countries with war,	
	forest loss	43		actual 2012 and 2030 target	83
2.4	Net benefits from Target 5: 50		4.15	Number of countries with war,	
	percent reduction in global			actual 2012 and 2030 target	83
	wetland loss	44	5.1	Indicator list by information	
2.5	Net benefits from Target 10:			access type	95
	50 percent reduction in global		5.2	Population survey estimated costs	97
	coral loss	45	5.3	\$1 billion per target rule	101
2.6	Net benefits from Target 10:		5.4	DHS Survey question topic	
	Increase in protected areas	46		examples	106
2.7	Costs and benefits of biodiversity		5.5	Summary of the DHS Survey's	
	goals (\$ billion 2012 prices)	47		general logistics	106
2.8	Net benefits from Aichi Target 5:		5.6	CWIQ Survey question topic	
	50 percent reduction in rate of			examples	106
	wetland loss	50	5.7	Summary of CWIQ Survey's general	
2.9	Net benefits from Aichi Target 10:			logistics	107
	50 percent reduction in rate of		5.8	LSMS Survey question topic	
	coral loss	50		examples	107
3.1	Benefit-cost summary	61	5.9	Summary of LSMS Survey's general	
4.1	Homicide costs as a share of GDP,			logistics	107
	by World Bank region	69	5.10	MICS Survey question topic	
4.2	Estimates of welfare costs of			examples	107
	interpersonal and collective violence		5.11	Summary of MICS Survey's general	
	as a share of regional and global			logistics	107
	GDP for 2013	70	5.12	MDG time period (1990–2015)	
4.3	Estimates of welfare costs of			overall costs, small country (0–5 m)	108
	interpersonal and collective violence		5.13	MDG time period (1990–2015)	
	as a share of country GDP for 2013,		0.10	overall costs, medium country	
	by region	70		(5–20 m)	108
4.4	Cost of nonfatal domestic	, 0	5.14	MDG time period (1990–2015)	100
	child abuse	72	J.17	overall costs, large country	
4.5	Cost of reported sexual abuse of			(20+ m)	109
т.Ј	children	73	5.15	CWIQ known samples	110
	Cimarcii	13	5.15	C1116 KIIOMII SMIIIbics	110

Cambridge University Press

978-1-108-41545-3 — Prioritizing Development: A Cost Benefit Analysis of the United Nations' Sustainable Development Goals

Edited by Bjorn Lomborg

Frontmatter

More Information

-				List of Tables	XV
5.16	LSMS known surveys	110	7.2	Benefits and costs of energy	
5.17	Known censuses	112		targets	151
5.18	Known DHS surveys	114	7.3	Benefit-cost summary – universal	
6.1	Rate of return and benefit-cost ratios			energy access goals	161
	of preschool programs in the		8.1	Cost estimates for public register	
	United States	123		of UK company beneficial	
6.2	Benefit-cost ratios of preschool			ownership, US\$	181
	programs in developing		8.2	Range of benefit-cost ratios for	
	countries	123		proposed target (i), UK–global	
6.3	Social and private returns to			extrapolation	182
	investment in education by level		8.3	Range of benefit-cost ratios for	
	and region (%)	124		proposed target (i), UK-EU-global	
6.4	Private returns to investment in			extrapolation	183
	education by region (%)	124	8.4	Range of benefit-cost ratios for	
6.5	Average returns to education in			proposed targets	185
	29 OECD countries (%)	124	9.1	Comparative static effects on	
6.6	Social returns to investment in			economic welfare of trade	
	upper secondary school streams,			reform under three different	
	Tanzania	125		prospective Asia-Pacific	
6.7	Primary school enrollment ratio,			preferential free-trade agreements,	
	latest data (%)	126		2025	200
6.8	Preprimary gross enrollment		9.2	Assumptions used in the benefit-	
	ratio (%)	127		to-cost calculus	201
6.9	Secondary enrollment indicators,		9.3	Net present value of benefits and	
	2011 or latest year	127		costs to 2100, and benefit-to-cost	
6.10	Countries at the top and bottom of			ratios, from reducing trade barriers	
	the 2012 PISA score	128		and farm subsidies globally under	
6.11	Benefit-cost ratios by level of			the WTO's Doha Development	
	schooling and region – base			Agenda	204
	scenario	129	9.4	Net present value of benefits and	
6.12	Benefit-cost ratios of meeting the			costs to 2100, and benefit-to-cost	
	100 percent net primary enrollment			ratios, from reducing trade barriers	
	target in sub-Saharan Africa			and subsidies under three alternative	
	by 2030	130		Asia-Pacific regional trade	
6.13	Benefit-cost ratios of meeting the			agreements	205
	100 percent net primary enrollment		10.1	Premature deaths in 2030 (millions):	
	target in world by 2030	130		Unaltered and targeted	
6.14	Preschool enrollment ratio			reductions, by age, specific disease,	
	2010 and target year (%)	131		and World Bank income	
6.15	Benefit-cost ratios of meeting the			groupings	223
	50 percent reduction of children		10.2	Benefit-to-cost ratio for overarching	
	who are not attending preschool in			goal: Avoiding 40 percent reduction	
	sub-Saharan Africa by 2030	131		in premature death	224
6.16	Testing the sensitivity of the internal		10.3	Benefit to cost ratio sensitivity	
	rate of return to B/C ratio			analysis using a variety of	
	conversion	136		methods	225
7.1	Cost estimates for global modern		10.4	Benefit-to-cost ratio for proposed	
	cooking facilities	150		targets	226

xvi List of Tables

10.5	Estimating the ratio of "disability		14.7	Neonatal mortality by country	275
10.5	adjusted life years" (DALY) to total "all-cause deaths," by age group,		15.1	Life years gained and cost of each goal	280
	below age 70 years in the		15.2	Benefit, cost, and benefit-to-cost ratio	200
	year 2012	229	13.2	at US\$1,000 per life year gained	280
11.1	Health and NCD goals, targets,		15.3	Benefit, cost, and benefit-to-cost	
	and indicators	232		ratio at US\$5,000 per life year	
11.2	Projected deaths from			gained	280
	noncommunicable diseases		16.1	Western Africa: at-risk population	289
	in 2030	235	16.2	Southern and Eastern Africa:	
11.3	Tobacco taxation, calculation			at-risk population	289
	inputs	235	16.3	Benefit, cost, and benefit-to-cost	
11.4	Aspirin therapy, calculation inputs	236		ratio at US\$1,000 per life year	
11.5	Population salt reduction,			gained	290
	calculation inputs	237	16.4	Benefit, cost, and benefit-to-cost	
11.6	Hypertension management,			ratio at US\$5,000 per life year	
	calculation inputs	238		gained	290
11.7	Secondary prevention of CVD		17.1	Targets to be analyzed in the CBA	303
	with polydrug, calculation inputs	238	17.2	Mapping penetration targets to	
11.8	Selected interventions to achieve			change in lines needed for each	
	post-2015 NCD target: benefits and			target	304
	costs, BCR (3% discounting)	239	17.3	Cost per line assumptions used for	
12.1	Comparison of benefit-cost ratios	249		the cost-benefit analysis	305
13.1	Summary of recent studies on		17.4	Cost-benefit ratios depending on	
	intensified and active case finding,			three scenarios	306
	screening, and the treatment of		17.5	Net present value (NPV) of benefits	
	latent TB	257		and costs of conservative scenario,	
13.2	Summary of key recent studies in			USD millions	306
	the diagnosis and treatment of		17.6	Main parameter assumptions by	
	drug-susceptible TB	258		scenario	308
13.3	Summary of benefit-cost ratios for		17.7	CBA using different methodology	
	key TB strategies	259		to assess the benefits	309
13.4	Benefit for every dollar spent on		17.8	Compound annual growth rate	
	reducing incidence of tuberculosis	259		due to increase in broadband	
14.1	Global trends in neonatal, infant,			penetration, by broadband	
	and under-five mortality	267		penetration target	313
14.2	Regional distribution of child death		17.9	Main parameters of CBA	314
	by age group	268		Examples of broadband state	
14.3	Income per capita and distribution			aids in the European Union,	
	of infant mortality rates	270		2013–2014	315
14.4	Country-specific estimates of main		18.1	Average annual growth rates (%)	
	causes of neonatal mortality	271		to 2050 for GDP, population, and	
14.5	Estimated cost of scaling up essential			per capita GDP by region	
	maternal and neonatal child health			under SSP2	325
	services	272	18.2	Scenario summary	325
14.6	Benefit-cost ratios for a comprehensiv		18.3	Selected infrastructural variables	
	intervention package to reduce			and rationale	328
	neonatal mortality by 70 percent	273	18.4	Econometric results	330
	, , <u>, , , , , , , , , , , , , , , , , </u>				

				List of Tables	AVII
18.5	Investment (US\$) requirements in		22.1	Basic figures on R&D ratios	401
	infrastructure to reduce PHL by five		22.2	Computations of discounted	
	percentage points	331		benefit-cost ratios for incremental	
18.6	World prices in 2050 (% change			R&D targets in developing	
	from baseline)	331		countries: Raise RD/GDP ratio to	
18.7	Population at risk of hunger			0.5 percent by 2030 (benefits and	
	in 2050	332		costs in \$b)	404
18.8	Number of malnourished children		22.3	Computations of discounted	
	in 2050	332		benefit-cost ratios for incremental	
18.9	Global change in producer surplus,			R&D targets in emerging countries:	
	consumer surplus, and welfare by			Raise RD/GDP ratio to 1.5 percent	
	2050 between baseline and investmen	t		by 2030 (benefits and costs in \$b)	405
	scenarios, using a discount rate of		22.4	Estimates of intra-Americas bilateral	
	5 percent	333		migrant stocks of managerial and	
18.10	Investment scenarios	334		technical workers, 2010	408
18.11	Benefit-cost analysis under		22.5	Computations of discounted benefit-	
	100 percent cost allocation and a			cost ratios for North-South Western	
	5 percent discount rate	334		Hemisphere Innovation Zone:	
19.1	Violence against women	344		5 percent increase in visas for	
19.2	Violence against women, cost-			managerial and technical workers,	
	effectiveness estimates	344		10-year duration (medium	
19.3	Percentage of 15- to 19-year-old			parameter values)	412
	girls married or in a consensual		22.6	Computations of discounted benefit-	
	union by country and year	345		cost ratios for North-South Western	
19.4	Reducing early marriage	347		Hemisphere innovation zone:	
19.5	Women's rights by country's			20 percent increase in visas for	
	income	350		managerial and technical workers	
19.6	Economic opportunities			phased in over five years, ten-year	
	for women	354		duration (high parameter values)	414
19.7	Education for women	358	23.1	Population (000s) included in study	
19.8	Summary of recommendations	359		by world region (years 2015	
19.9	Summary of BCRs	360		and 2030)	424
20.1	Benefit-cost ratio per child for		23.2	High- and low-cost scenarios for	
	nutrition investment in 17			technology options for unserved	
	countries	371		populations	427
20.2	Benefit-cost ratio per child for		23.3	Benefits of drinking water supply,	
	nutrition investments in 17 countries			sanitation, and handwashing	428
	for individuals working to age 50		23.4	Relative risk reductions in health	
	or 60	373		impacts for WASH interventions	429
21.1	Summary of costs, benefits, and		23.5	Variables, data sources, and	
	benefit-cost ratios for voluntary	255		values for health economic benefits,	
21.2	family planning programs	377		for the example of diarrheal	42.1
21.2	International migrant stock as			diseases	431
	percentage of total population, by	20.1	23.6	Variables, data sources, and values	42.5
21.2	age range, 2010	384	22.7	for "convenience" time savings	431
21.3	Approximate benefit-cost ratios for		23.7	Total population to serve from	
	key policy priorities in the area of	200		2015 to 2030 to reach universal	122
	population and demography	390		access to basic services (million)	432

xviii	List of Tables				
23.8	Annual costs and benefits to meet and sustain universal access (100		22.15	per DALY averted (3 percent discount rate)	438
	percent coverage), focusing on the projected unserved population in 2015 (US\$ billions)	433	23.15	Benefit-cost ratios when premature mortality is valued at US\$5,000 per DALY averted (3 percent	
23.9	Benefit-cost ratios for basic water	733		discount rate)	438
	supply in urban areas, by income quintile (3 percent discount rate)	434	23.16	Countries included and excluded in study, by MDG region	440
23.10			23.17	Benefit-cost ratios when premature mortality is valued at US\$1,000 per	
	quintile (3 percent discount rate)	434		DALY averted (5 percent	
23.11	Benefit-cost ratios for basic sanitation in urban areas, by income quintile (3 percent discount rate)	436	23.18	discount rate) Benefit-cost ratios when premature mortality is valued at US\$5,000	441
23.12	Benefit-cost ratios for basic sanitation in rural areas, by income quintile			per DALY averted (5 percent discount rate)	441
23.13	(3 percent discount rate)	436	24.1	Comparison of monetary costs and benefits of eradicating extreme poverty in Vietnam (with benefits	
	income quintile (3 percent discount rate)	437		measured in terms of human capital)	463
23.14	Benefit-cost ratios when premature		25.1	Assessment of proposed governance	

targets

mortality is valued at US\$1,000

489

Boxes

25.1 Open working group proposals for sustainable development goals:

Goal 16 476

C.1 The phenomenal development

targets 502

Contributors

Kym Anderson, George Gollin Professor of Economics, School of Economics, University of Adelaide, and Professor of Economics, Arndt-Corden Department of Economics, Australian National University, Canberra, Australia

Emmanuelle Auriol, Professor, Toulouse School of Economics, University of Toulouse, France

Till Bärnighausen, Alexander von Humboldt University Professor of Global Health, Heidelberg University, Germany and Adjunct Professor of Global Health, Harvard T.H. Chan School of Public Health, Massachusetts, USA and Lead for health systems research and impact evaluation, Africa Health Research Institute, Mtubatuba, KwaZulu-Natal, South Africa

Jere R. Behrman, W. R. Kenan, Jr. Professor of Economics and Director of Population Studies Center, University of Pennsylvania, USA

David E. Bloom, Clarence James Gamble Professor of Economics and Demography, Harvard T.H. Chan School of Public Health, Massachusetts, USA

Elizabeth Brouwer, Pharmaceutical Outcomes Research and Policy Program, University of Washington, USA

Alex Cobham, Chief Executive, Tax Justice Network

Irma Clots-Figueras, Associate Professor of Economics, Carlos III University, Madrid, Spain

Stefan Dercon, former Chief Economist, Department for International Development (DFID), UK; Professor of Economic Policy, Oxford University, UK

James Fearon, Professor in School of Humanities and Sciences and Professor of Political Science, Stanford University, California, USA

Günther Fink, University of Basel and Head of the Household Economics and Health Systems Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland

Isabel Galiana, Lecturer, Department of Economics, McGill School of Environment, Montreal, Canada

Cindy L. Gauvreau, Post-Doctoral Fellow/ Economist, Centre for Global Health Research, St. Michael's Hospital, Toronto, Canada

Pascal Geldsetzer, Research Fellow, Harvard T.H. Chan School of Public Health, Massachusetts, USA

John Gibson, Professor of Economics, University of Waikato, Hamilton, New Zealand

Alexia Lee González Fanfalone, OECD Economist/Policy Analyst and PhD Candidate Toulouse School of Economics, France

Mary E. Hilderbrand, Associate Professor of the Practice, George H. W. Bush School of Government and Public Service, Texas A&M University, USA and Faculty Affiliate, Center for International Development, Harvard University, Massachusetts, USA

John Hoddinott, H. E. Babcock Professor of Food & Nutrition Economics and Policy, Cornell University, Ithaca, New York, USA

Anke Hoeffler, Research Officer at the Centre for the Study of African Economies, University of Oxford, UK

XX

List of Contributors

xxi

Susan Horton, CIGI Chair in Global Health Economics, University of Waterloo, Canada

Ryan Hum, Special Lecturer, Faculty of Applied Science and Engineering, University of Toronto, Canada

Salal Humair, Senior Principal Research Scientist, Amazon.com, Inc.

Kristine Husøy Onarheim, University of Bergen, Norway

Guy Hutton, Senior Advisor, WASH, UNICEF

Johanne Helene Iversen, Medical Doctor, Advisor for Coalition for Epidemic Preparedness Innovations, University of Bergen, Norway

Morten Jerven, Associate Professor in School of International Studies, Simon Fraser University, Burnaby, British Columbia, Canada

Prabhat Jha, Professor of Economics, Canada Research Chair of Health and Development at the University of Toronto, Canada and Founding Director of the Centre for Global Health Research, St. Michael's Hospital, Toronto, Canada

Keely Jordan, Health Policy Analyst, University of California, San Francisco, USA

Hans-Peter Kohler, Frederick J. Warren Professor of Demography, University of Pennsylvania, USA

Finn Kydland, Nobel Laureate in Economic Science, Henley Professor of Economics, University of California, Santa Barbara, USA

Bjorn Larsen, Economist and Consultant

Dara Lee Luca, Economist, Mathematica Policy Research, Massachusetts, USA

Eduardo Magalhaes, Consultant, EPTD, IFPRI

Anil Markandya, Honorary Professor of Economics, University of Bath, UK and Distinguished

Ikerbasque Professor of the Basque Centre for Climate Change in the Basque Country, Spain

Keith E. Maskus, Professor of Economics, University of Colorado, Boulder, USA

Daniel Mason-D'Croz, Research Analyst, EPTD, IFPRI

Elizabeth Mitgang, Research Specialist, Georgetown University Center on Medical Product Access, Safety, and Stewardship, Washington, DC, USA

Rachel Nugent, Vice President, Global NCDs RTI International, Seattle WA, USA and Affiliate Faculty, Department of Global Health, University of Washington, Seattle, WA, USA.

Stephen A. O'Connell, former Chief Economist, United States Agency for International Development (USAID); Gil and Frank Mustin Professor of Economics, Swarthmore College, Pennsylvania, USA

Klaus Prettner, Professor of Economics, University of Hohenheim, Germany

George Psacharopoulos, Economics Expert, former London School of Economics and Political Science and the World Bank, UK

Neha Raykar, Nutrition Lead, Oxford Policy Management India

Mark W. Rosegrant, Director of the Environment and Production Technology Division, International Food Policy Research Institute (IFPRI), Washington, DC, USA

Tom Schelling, Nobel Laureate in Economic Science

Alyssa Shiraishi Lubet, School of Public Health, Harvard University, Massachusetts, USA

Nancy Stokey, Frederick Henry Prince Distinguished Service Professor in Economics, University of Chicago, Illinois, USA

Rowena A. Valmonte-Santos, Senior Research Analyst, EPTD, IFPRI

xxii List of Contributors

Anna Vassall, Senior Lecturer in Health Economics, London School of Hygiene and Tropical Medicine, UK

Alternative Perspective Contributors

Matt Andrews, Edward S. Mason Senior Lecturer in International Development, Harvard Kennedy School, Massachusetts, USA

Christopher B. Barrett, Stephen B. and Janice G. Ashley Professor of Applied Economics, Charles H. Dyson School of Applied Economics and Management, and Professor, Department of Economics, Cornell University, New York, USA

S. Brock Blomberg, Professor of Economics, Claremont McKenna College, California, USA

Luke Brander, Environmental Economist, Consultant

Elissa Braunstein, Associate Professor, Department of Economics, Colorado State University, USA

David Canning, Professor of Population Sciences and Professor of Economics and International Health, School of Public Health, Harvard University, Massachusetts, USA

Tom Cardamone, Managing Director, Global Financial Integrity, USA

Gregory Casey, Doctoral Candidate, Brown University, Rhode Island, USA

Guarav Datt, Associate Professor of Economics, Monash University, Australia

Gabriel Demombynes, Senior Economist, World Bank

Carolyn Fischer, Senior Fellow and Associate Director, Resources for the Future

Oded Galor, Herbert H. Goldberger Professor of Economics, Core Faculty, Population and Training

Center, Brown University, Rhode Island, USA and Fellow, Department of Economics, Hebrew University, Israel

Madeleine Gleave, Advanced Implementation Specialist, Dharma Platform, USA

Paul Glewwe, Professor of Economics, Department of Applied Economics, University of Minnesota, USA

Bernard Hoekman, Robert Schuman Chair and Research Area Director of Global Economics, European University Institute, Italy

Mike Holland, Independent Consultant, Ecometrics Research and Consulting

Joyce P. Jacobsen, Professor of Economics, Wesleyan University, Connecticut, USA

Marc Jeuland, Associate Professor, Duke University, North Carolina, USA

Deborah Johnston, Reader in Development Economics, School of Oriental and African Studies, University of London, UK

Dev Kar, Chief Economist, Global Financial Integrity, USA

Pantelis Koutroumpis, Research Fellow, Imperial College London, UK

Valerie Kozel, Associate Adjunct Professor, University of Wisconsin–Madison, USA

Aart Kraay, Economist in Development Research Group, World Bank

Caroline Krafft, Assistant Professor of Economics, St. Catherine University, Minnesota, USA

Patrick Low, Vice President for Research and Senior Fellow, Fung Global Institute, Hong Kong

Alistair McVittie, Resource Economist, Scottish Agricultural College, UK

List of Contributors xxiii

Robert Mendelsohn, Edwin Weyerhaeuser Davis Professor of Forest Policy, Professor of Economics, and Professor, School of Management, Yale University, Connecticut, USA

Adele Morris, Fellow and Policy Director for Climate and Energy Economics Project, Brookings Institution, Washington, DC, USA

Todd Moss, Chief Operating Officer and Senior Fellow, Center for Global Development

Peter F. Orazem, Professor of Economics, Department of Economics, Iowa State University, USA

Peter Reuter, Professor in School of Public Policy and Department of Criminology, University of Maryland, USA **Kamal Saggi**, Professor of Economics, Vanderbilt University, Tennessee, USA

Justin Sandefur, Research Fellow, Center for Global Development

Pamela Smith, Associate Professor of Applied Economics, University of Minnesota, USA

Rodrigo R. Soares, Professor of Economics, Sao Paulo School of Economics, Brazil

Dale Whittington, Professor, Departments of Environmental Sciences & Engineering, and City & Regional Planning, University of North Carolina at Chapel Hill, USA, and Manchester Business School, UK