Photovoltaic Science and Technology

Solar Photovoltaics (SPV) forms an integral part of renewable energy systems that are crucial for combating global warming. Given the widespread availability of solar energy, direct conversion to electricity has the advantages of easy installation, modular nature ranging from small to large scale power generation, low maintenance costs and a long life of more than 25 years. Solar PV has become more attractive over the last decade due to increasing efficiency and fast reduction of cost per kWh. This book presents a comprehensive coverage of the science and technology of SPV. The initial chapters introduce the basic physical principles, bulk and thin film materials used for solar cells, and the design and efficiency considerations. Concentrator and tandem cells are discussed along with recent advances using perovskite and organic cells.

The text discusses thoroughly the technology behind the production of, both, SPV cells and modules. These aspects are related to the efficiency, overall cost, balance-of-system (BOS), energy payback time and financing considerations. A dedicated chapter covers details of characterization, testing and reliability of SPV modules. The contents of the book have been enriched with experimental data and models. Several aspects such as cell and module manufacture, characterization, testing, reliability and system design are described taking into account commercial SPV manufacturing plants. Photovoltaic applications are explained for different types of SPV systems: from grid-connected to stand-alone, with plenty of solved examples and exercises for readers.

J. N. Roy is Visiting Professor at the Advanced Technology Development Centre (ATDC) and School of Energy Science and Engineering (SESE) at the Indian Institute of Technology Kharagpur. He teaches courses relating to SPV and microelectronics including IC fabrication, device modeling, circuit simulation and modeling. He has co-authored the book Introduction of VLSI Design and Technology. He is a Senior Member of IEEE and Fellow of Indian Microelectronics Society (IMS) and Indian National Academy of Engineering (INAE).

D. N. Bose is a leading researcher on Semiconductor Materials and Devices. He was an ICI scholar at the University of Reading and obtained his PhD in Semiconductor Physics in 1965. At the Indian Institute of Technology Kharagpur (1977–98), his group successfully completed major SPV projects on ‘Polycrystalline Silicon from rice-husk’ and ‘Study of PEC solar cells using III–V compounds and ternary alloys’. In 1982, as a Visiting Professor at the University of Neuchatel, Switzerland, he gave a course of 32 lectures on ‘The Physics and Technology of Solar Cells’. He was a Visiting Professor at Virginia Polytechnic Institute, USA (1985–86) and a Visiting Scientist at MIT, USA, in 2003. He has more than 200 publications in various international journals and conferences. He is a Senior Member of IEEE. He was elected Fellow of the Indian Academy of Science and the National Academy of Science. Presently he is Visiting Professor at St. Xavier’s College, Kolkata.
Photovoltaic Science and Technology

J. N. Roy

D. N. Bose
To Mahua, my loving wife and companion for more than 32 years.

— J. N. Roy

To my students at the Indian Institute of Technology, Kharagpur and the Indian Institute of Science, Bangalore.

— D. N. Bose
Contents

<table>
<thead>
<tr>
<th>Figures</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>xxiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxvii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xxxi</td>
</tr>
</tbody>
</table>

1. Introduction to Solar Energy and Solar Photovoltaics 1-30

1.1 Introduction 1
1.2 Solar Energy Conversion 5
1.3 Principle 7
1.4 Optical Properties of Semiconductors 11
1.5 Direct vs Indirect Gap Semiconductors 11
1.6 Electrical Properties of p-n junctions 14
1.7 C-V Relation 17
1.8 Schottky Barrier Cells 18
1.9 Metal-Insulaor-Semiconductor Solar Cells 20
1.10 Vertical Junction Cells 21
1.11 Heterojunctions 22
1.12 Efficiency Limitations 24
1.13 Shockley–Queisser Theory 25
1.14 CdS/p-Cu₂S Thin Film Cells 27

Summary 28

Problems 29

References 29

2. Crystalline Silicon Cells 31-65

2.1 Polysilicon Production 31
2.2 Crystal Growth 34
2.3 Float Zone Silicon 36
2.4 Directional Solidification 37
2.5 Growth of Ribbon Silicon 39
2.6 Properties of Silicon 41
Contents

2.7 Temperature Dependence 42
2.8 Recombination 46
2.9 Surface Recombination 48
2.10 Si Multi-Crystalline Cells 49
2.11 Spectral Response 51
2.12 Cell Performance at Different Insolations 53
2.13 Improved Silicon Cell Structures 54
2.14 Thin Si Cells 55
2.15 Plasmonic Solar Cells 57
2.16 Luminescent Solar Concentrators (LSC) 60
2.17 Directionally Selective Filter 60
2.18 High Efficiency Cells 61
Summary 62
Problems 63
References 64

3. Thin Film Solar Cells 66–96
3.1 Introduction 66
3.2 Amorphous Silicon Cells 66
3.3 Tandem Cells 73
3.4 HIT Cells 74
3.5 CIS and CIGS Thin Film Cells 75
3.6 CdTe Cells 78
3.7 CZTSSe Solar Cells 80
3.8 Perovskite Solar Cells 83
Summary 92
Problems 93
References 93

4. III-V Compound, Concentrator and Photoelectrochemical Cells 97–133
4.1 III-V Compound Semiconductor Solar Cells 97
4.2 Heterostructures 99
4.3 Metalorganic Vapour Phase Epitaxy (MOVPE) 100
4.4 Strained Layers 103
4.5 Concentrator Solar Cells 104
4.6 Multi-junction Cells 110
4.7 Nitride Family 116
4.8 Laboratory vs Panel efficiencies of solar cells 117
4.9 Solar Cells in Space Application 117
4.10 Photoelectrochemical Devices 121
Summary 130
Problems 130
References 131
5. Organic and Polymer Solar Cells

- **5.1 Introduction** 134
- **5.2 Energy Levels** 134
- **5.3 Advantages of Organic Semiconductors** 135
- **5.4 Disadvantage of Organics** 135
- **5.5 Differences between Organic and Inorganic Photovoltaics** 135
- **5.6 Types of Organic Molecules** 137
- **5.7 Steps for Solar Cell Operation** 140
- **5.8 Fundamental Limits to Efficiency of Organic Cells** 140
- **5.9 Types of Organic Cells** 141
- **5.10 Performance and Future Proposals for Organic Cells** 150
- **5.11 Third Generation Photovoltaics** 153

Summary 155

Problems 155

References 156

6. Manufacture of c-Si and III-V-based High Efficiency Solar PV Cells

- **6.1 Introduction** 158
- **6.2 c-Si Cell Manufacturing: Base Line Process** 161
- **6.3 Advances in c-Si Cell Technology** 182
- **6.4 High Efficiency III-V Based Cell Technology** 192

Summary 198

Problems 198

References 200

7. Manufacture of Solar PV Modules

- **7.1 Introduction** 203
- **7.2 c-Si Module Configuration and Manufacturing** 204
- **7.3 a-Si Module Manufacturing** 236
- **7.4 Compound Semiconductor Thin Film Manufacturing** 240
- **7.5 Economics of Module Manufacturing** 243

Summary 254

Problems 255

References 257

8. Characterization, Testing and Reliability of Solar PV Module

- **8.1 Introduction** 259
- **8.2 Characterization during c-Si Module Manufacturing** 260
- **8.3 Testing for Electrical Characteristics of Finished Module** 277
- **8.4 Reliability Modelling and Testing** 288

Summary 312

Problems 313

References 318
Contents

9. **Overview of Solar PV System Technology and Design** 320–357
 9.1 Introduction 320
 9.2 Fixed and Tracking SPV Systems 322
 9.3 Solar Inverter and PCU 328
 9.4 Connection of Solar Modules in SPV Systems-String Design 330
 9.5 Solar Cell/Module Technology 333
 9.6 Sizing of Inverter/PCU and Battery 335
 9.7 Classification of SPV System and Brief Description 336
 9.8 Energy Production from SPV System 345
 9.9 Economic Viability of SPV Systems 346
 Summary 352
 Problems 353
 References 356

 10.1 Introduction 358
 10.2 Balance of System (BOS) 359
 10.3 Grid Interactive Net Metering SPV Systems 383
 10.4 Energy Estimation of SPV Systems 385
 10.5 Performance Ratio (PR) and Capacity Utilization Factor (CUF) of SPV Power Plants 389
 10.6 Levelized Cost of Energy (LCOE) 392
 Summary 395
 Problems 396
 References 399

Index 401–413
Figures

Fig. 1.1 Solar spectrum at AM 0, AM 1 and AM 2. 1
Fig. 1.2 Global temperature rise, 1890–2010. 2
Fig. 1.3 Global CO$_2$ rise at Mauna Loa, 1968–2008. 2
Fig. 1.4 World energy supply, 2000–50. 2
Fig. 1.5 Break-up of world’s energy supply. 3
Fig. 1.6 Inclination of solar radiation defines AM X. 4
Fig. 1.7 Schematic of a p-n junction. 9
Fig. 1.8 Maximum theoretical efficiency vs Eg band gap of semiconductor for concentration $C = 1$ and $C = 1000$ 10
Fig. 1.9 Band structure (a) Si (indirect gap) vs (b) GaAs (direct gap). 12
Fig. 1.10 Absorption spectra of semiconductors (α vs λ). 13
Fig. 1.11 I-V characteristic of a p-n junction solar cell showing maximum power rectangle. 16
Fig. 1.12 Equivalent circuit of a p-n junction solar cell. 16
Fig. 1.13 Solar cell I-V characteristic showing effects of series and shunt resistances R_s and R_{sh}. 17
Fig. 1.14 $1/C^2$ vs V relation of a p-n junction. 18
Fig. 1.15 Schottky barrier solar cell on p-Si. 19
Fig. 1.16 (a) Silicon MIS solar cell (after van Halen et al. [15]) (b) Vertical junction solar cell (after Frank et al. [16]). 21
Fig. 1.17 Types of heterojunctions: (a) straddled (b) staggered (c) broken gap. 22
Fig. 1.18 Anisotype heterojunction: (a) two different semiconductors before contact (b) after contact to form an anisotype heterojunction. 24
Fig. 1.19 Loss mechanisms in solar cells (after Markvart [20]). 25
Fig. 1.20 Shockley–Queisser limit of efficiency vs band gap. 26
Fig. 1.21 Efficiencies of different semiconductors shown against the Shockley–Queisser limit. 26
Fig. 1.22 Band diagram of CdS-Cu$_2$S solar cell (after Burton et al. [25]). 27
Fig. 2.1 Siemens process for production of polysilicon. 32
Fig. 2.2 Schematic diagram of single crystal growth. 34
Fig. 2.3 Czochralski single crystal growth system. 35
Fig. 2.4 Float zone silicon. 36
Fig. 2.5 Ingot casting technique using cold crucible (after Bhattacharya [7]). 38
Fig. 2.6 HEM growth furnace for directional solidification of silicon. 39
Fig. 2.7 Schematic diagram of growth of silicon ribbon. 40
Fig. 2.8 Variation of electron and hole mobilities of silicon and GaAs with impurity concentration [2]. 41
Fig. 2.9 Temperature dependence of the band gaps of Ge, Si and GaAs [2]. 42
Fig. 2.10 Variation of intrinsic carrier concentration ni vs 1000/T for silicon and GaAs [2]. 43
Fig. 2.11 Variation of carrier concentration n vs 1000/T. 44
Fig. 2.12 Variation in electron and hole mobilities in silicon with temperature [2]. 44
Fig. 2.13 I-V characteristics of a silicon p-n junction solar cell at 0°C, 25°C and 60°C (after Bhattacharya [7]). 45
Fig. 2.14 Impurity levels in Si and GaAs. 47
Fig. 2.15 Recombination mechanisms in semiconductors. 47
Fig. 2.16 Effect of metal impurities in the degradation of n-Si and p-Si cell efficiencies (Davis et al. [10]). 48
Fig. 2.17 Schematic of silicon surface showing dangling bonds on (111) surface. 49
Fig. 2.18 Grain boundaries in multi-crystalline silicon. 50
Fig. 2.19 Energy band diagram of a grain boundary in n-Si showing barrier height ϕ_b. 50
Fig. 2.20 Variation of cell efficiency vs grain size in multi-crystalline silicon (after Socolof and Iles [14] and Card and Yang [15]). 51
Fig. 2.21 Schematic of optical absorption in a solar cell [2]. 52
Fig. 2.22 Spectral response of ‘normal’ and ‘violet’ cells. 54
Fig. 2.23 Schematic of a back-surface field solar cell [17]. 55
Fig. 2.24 Solar cell with Lambertian back reflector. 56
Fig. 2.25 Close-up of Black silicon cones prepared by RIE (from LP 3 – CNRS). 57
Fig. 2.26 Bulk and Surface Plasmons. 58
Fig. 2.27 Size-and shape-dependent plasmon resonance of silver nanoparticles. 59
Fig. 2.28 Metal nanoparticles on dielectric in a plasmonic solar cell [30]. 59
Fig. 2.29 Luminescent solar concentrator (Wikipedia [33]). 60
Fig. 2.30 Passivated emitter solar cell (after Martin Green [37]). 61
Fig. 2.31 Point contact solar cell (after Swanson [39]). 62
Fig. 3.1 Density of states in an amorphous semiconductor showing ‘mobility gap’ [2]. 67
Fig. 3.2 Optical absorption of a-Si vs c-Si (Lecomber and Spear, [4]). 68
Fig. 3.3 Density of states in band gap of a-Si prepared by evaporation (dotted line ----) and by glow discharge (full line -------) (Orton, [2]). 69
Fig. 3.4 Different structures of a-Si solar cells: (a) p-i-n (b) p-i-n/p-i-n and (c) band diagram of p-i-n/p-i-n cells showing tunnel junction. 70
Fig. 3.5 Staebler–Wronski effect: (a) degradation of dark conductivity with light exposure (b) resistivity vs temperature before and after annealing.
Fig. 3.6 a-Si tandem cell.
Fig. 3.7 HIT cell structure.
Fig. 3.8 Structure of high efficiency CdS/CIS cells (Boeing, 1982).
Fig. 3.9 (a) Zn-Cds-CIGS cell (b) CdTe-CdS cell.
Fig. 3.10 Energy band diagram of ZnO-Cds-CdTe solar cell (Hamid Fardi and Fatima Buny [21]).
Fig. 3.11 (a) Chalcopyrite (b) kesterite and (c) stannite crystal structures.
Fig. 3.12 Band alignment of binary, ternary, and quaternary semiconductors (Chen et al. [25]).
Fig. 3.13 Structure of CZTSSe solar cell (Wang et al. [26]).
Fig. 3.14 J-V characteristic of 11.1% efficiency CZTS cell [27].
Fig. 3.15 Crystal structure of CH$_3$NH$_3$PbI$_3$ showing methylammonium cation (CH$_3$NH$_3$)$^+$ surrounded by PbX$_6$ octahedra (Eames et al. [33]).
Fig. 3.17 (a) Molecular structure, cross-sectional view and SEM of MAPI cell (b) band alignment of MAPI with and without ZnO; and (c) with PCNM buffer [35].
Fig. 3.18 (a) Schematic of Perovskite sensitized solar cell (b) TiO$_2$ undergoing photoexcitation and electron transfer and (c) incident photon-to-electron transfer efficiency (IPCE) vs wavelength of MAPI and MAPBr (Lee et al. [36]).
Fig. 3.19 (a) One-step and (b) Two-step deposition (Im, Kim and Park [37]).
Fig. 3.20 Vapour deposition of perovskite (Chen et al. [39]).
Fig. 3.21 (a) I-V characteristics of highest efficiency perovskite cell in dark and under one sun and (b) I-V characteristics with forward and backward scanning (Lee et al. [41]).
Fig. 3.22 Different types of tandem perovskite cells (Bailie and McGhee [46]).
Fig. 3.23 J-V curves for (a)–(b) monolithically stacked and (c)–(d) mechanically stacked tandem cells [46].
Fig. 4.1 Band gap energy vs lattice parameter for III-V and II-VI semiconductors.
Fig. 4.2 Optical absorption spectrum of wide band gap semiconductors at 77 K and 300 K (Sze [1]).
Fig. 4.3 GaAlAs/GaAs heterostructure solar cell.
Fig. 4.4 AlGaAs/GaAs HJ solar cell.
Fig. 4.5 A MOVPE system showing TMGa, TMI and DeZn bubblers and AsH$_3$, PH$_3$ gas lines.
Fig. 4.6 A MOVPE reactor for GaAs growth showing r.f. heater, TMG bubbler, AsH$_3$ line.
Fig. 4.7 Temperature dependence of MOVPE growth showing three growth regimes.
Fig. 4.8 Concentrators using (a) convex lens (b) Fresnel lens and (c) two mirrors (Sze [1]).
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Concentrator solar cell array using Fresnel lens.</td>
</tr>
<tr>
<td>4.10</td>
<td>(a) Spectral splitting using filters; and (b) Two-cell structure with two, three or four terminals.</td>
</tr>
<tr>
<td>4.11</td>
<td>Variation of efficiency, open-circuit voltage, short circuit current and fill-factor with solar concentration for silicon cells (Frank, Goodrich and Kaplow [15]).</td>
</tr>
<tr>
<td>4.12</td>
<td>Two junction PV converters showing iso-efficiency lines at 300 K with C = 1000 suns (Ferber et al. [18]).</td>
</tr>
<tr>
<td>4.13</td>
<td>Two stacked cells with three terminals (GaAsP /GaAsSb).</td>
</tr>
<tr>
<td>4.14</td>
<td>(a) layer structure and (b) spectral response of triple junction GaInP/InGaAs/Ge solar cell.</td>
</tr>
<tr>
<td>4.15</td>
<td>Illustrating presence of: (a) InGaP window layer and (b) p' InGaP back-surface field.</td>
</tr>
<tr>
<td>4.16</td>
<td>Spectral splitting in a four-layer tandem cell (Fraunhofer Institute [19]).</td>
</tr>
<tr>
<td>4.17</td>
<td>Solar cell characteristics of four cells in tandem (Fraunhofer Institute [19]).</td>
</tr>
<tr>
<td>4.18</td>
<td>Best research cell efficiencies (NREL).</td>
</tr>
<tr>
<td>4.19</td>
<td>Solar flux vs band gap for In_{1-x}Ga_xN.</td>
</tr>
<tr>
<td>4.20</td>
<td>Monolithic two-junction tandem solar cell for space applications.</td>
</tr>
<tr>
<td>4.21</td>
<td>Solar panels on International space station (from Wikipedia).</td>
</tr>
<tr>
<td>4.22</td>
<td>Structure of radiation-resistant silicon solar cell.</td>
</tr>
<tr>
<td>4.23</td>
<td>Principle of the operation of photo-electrochemical cell with n-type semiconductor photoelectrode.</td>
</tr>
<tr>
<td>4.24</td>
<td>Energy level diagram of semiconductor-electrolyte interface showing distribution of energy states for reduced and oxidized species of Redox couple.</td>
</tr>
<tr>
<td>4.25</td>
<td>Schematic diagram of a photo-electrochemical solar cell.</td>
</tr>
<tr>
<td>4.26</td>
<td>Energy position of band edge giving conditions for: (a) unconditional stability (b) unstable (c) stability against cathodic decomposition and (d) stability against anodic decomposition.</td>
</tr>
<tr>
<td>4.27</td>
<td>Energy levels of the conduction and valence bands of some semiconductors in pH 1 aqueous solution: (a) with respect to the vacuum level and (b) with respect to the normal hydrogen electrode.</td>
</tr>
<tr>
<td>4.28</td>
<td>CdTe PEC solar cell I–V characteristics: (a) after Ru surface modification (b) Pt modified (c) Pd-modified and (d) unmodified, showing increase in V_oc from 0.62 V to 0.92 V on Ru treatment (Mandal et al.).</td>
</tr>
<tr>
<td>4.29</td>
<td>Dye-sensitized TiO_2 cells.</td>
</tr>
<tr>
<td>4.30</td>
<td>Three-electrode storage system.</td>
</tr>
<tr>
<td>4.31</td>
<td>Photo-electrochemical cell with semiconductor photo-anode for solar hydrogen generation.</td>
</tr>
<tr>
<td>5.1</td>
<td>HOMO and LUMO levels in organic molecules (Fox [8]).</td>
</tr>
<tr>
<td>5.2</td>
<td>Mobility in organics 1984–2010 (Buth 2008 [11]).</td>
</tr>
</tbody>
</table>
Fig. 5.3 Hole mobility in organics (Buth F 2008 [11]).
Fig. 5.4 Electron mobility in organics (Buth F 2008 [11]).
Fig. 5.5 Types of organic molecules: (a) Anthracene (b) Pentacene (c) Polyacetylene (d) Polydiacetylene (e) PEDOT (f) PPV (g) MEH-PPV (below): CNPPV, PPV, Phthalocyanine (Pc), MEH-PPV (Wikipedia ‘Organic Solar cells’).
Fig. 5.6 HOMO and LUMO levels of organic semiconductors and fermi levels of contact metals (Buth F 2008 [11]).
Fig. 5.7 Steps in photocurrent generation in organics: (a) light absorption and exciton generation (b) exciton diffusion (c) charge collection (d) exciton dissociation and charge transfer (Forrest [12]).
Fig. 5.8 Internal efficiency η_{int} vs d/L_D (Forrest [12]).
Fig. 5.9 Single layer organic photovoltaic cell (Wikipedia ‘Organic Solar Cells’).
Fig. 5.10 Operating principle of bilayer organic photovoltaics (Buth F 2008 [16]).
Fig. 5.11 Bilayer cell on glass (Gunes S et al. 2007 [16]).
Fig. 5.12 Bilayer structure on plastic foil (Gunes S et al. 2007 [16]).
Fig. 5.13 Schematic of plastic solar cells. PET—polyethylene terephthalate, ITO—indium tin oxide, PEDOT:PSS—poly (3,4-ethylenedioxythiophene), active layer (usually a polymer:fullerene blend), Al—aluminium (Wikipedia ‘Organic Solar Cells’).
Fig. 5.14 Bilayer tandem double heterojunction cell (Xue et al. [17]).
Fig. 5.15 Bulk heterojunction cell (Wikipedia ‘Organic Solar Cells’).
Fig. 5.16 Highly-dispersed heterojunction cell (Wikipedia ‘Organic Solar Cells’).
Fig. 5.17 Heterojunction with controlled growth (Wikipedia ‘Organic Solar Cells’).
Fig. 5.18 I-V characteristic of polymer solar cell with and without TiO$_x$ optical spacer (Kim et al. [18]).
Fig. 5.19 Lumo Level vs Donor band gap (HOMO level as parameter) for high efficiency organics (Schaber et al. [20]).
Fig. 5.20 Structure of ideal interdigitated heterojunction cell: D & A interspaced--20 nm < L_j (Gunes S et al 2007 [16]).
Fig. 5.21 High efficiency organic cells (Heliatek [5]).
Fig. 5.22 Organic solar cell efficiency vs year (after Heliatek, Dresden).
Fig. 5.23 Hybrid cell with colloidal CdSe nanocrystals and conjugated polymers [23].
Fig. 5.24 Demonstration of multi-exciton generation in: (a) Silicon nanocrystals and (b) quantum efficiency vs energy hv/E_s for bulk Si, nanocrystals of diameters 3.8 nm and 9.5 nm (Beard et al. [26]).
Fig. 5.25 Resonant tunneling device to extract the hot carriers (Green [30]).
Fig. 5.26 Introduction of impurity levels for sub-band gap response (Green [30]).
Fig. 6.1 Cross section of c-Si cell.
Fig. 6.2 Topological picture of the front side a two-bus c-Si cell.
Fig. 6.3 Topological picture of a three-bus bars cell with segmented bus bar: (a) front side and (b) back side.
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Typical base line c-Si cell fabrication flow.</td>
<td>163</td>
</tr>
<tr>
<td>6.5</td>
<td>Schematic of photoconductive decay measurement set up.</td>
<td>164</td>
</tr>
<tr>
<td>6.6</td>
<td>Photoconductive decay characteristics with pulsed illumination.</td>
<td>164</td>
</tr>
<tr>
<td>6.7</td>
<td>Representative view of c-Si surface: (a) plane polished surface and (b) texturized surface. Reflection loss can be reduced by 20% to 30% by texturization.</td>
<td>166</td>
</tr>
<tr>
<td>6.8</td>
<td>Scanning electron microscope of a texturized surface.</td>
<td>166</td>
</tr>
<tr>
<td>6.9</td>
<td>Textured surface combined with reflecting back surface to provide optical confinement (light trapping).</td>
<td>166</td>
</tr>
<tr>
<td>6.10</td>
<td>Measurement of reflection coefficient using integrating sphere.</td>
<td>168</td>
</tr>
<tr>
<td>6.11</td>
<td>Reflection coefficient of various silicon surfaces showing effect of anti-reflection coating.</td>
<td>168</td>
</tr>
<tr>
<td>6.12</td>
<td>Concentration vs depth profile for limited source diffusion.</td>
<td>169</td>
</tr>
<tr>
<td>6.13</td>
<td>Schematic of a phosphorous doping furnace using POCl$_3$.</td>
<td>170</td>
</tr>
<tr>
<td>6.14</td>
<td>Concentration vs depth profile for constant source diffusion.</td>
<td>171</td>
</tr>
<tr>
<td>6.15</td>
<td>Sheet resistivity mapping equipment.</td>
<td>171</td>
</tr>
<tr>
<td>6.16</td>
<td>A schematic diagram of a plasma enhanced chemical vapour deposition system.</td>
<td>173</td>
</tr>
<tr>
<td>6.17</td>
<td>Ellipsometry equipment for measurement of thin film thickness and refractive index.</td>
<td>174</td>
</tr>
<tr>
<td>6.18</td>
<td>A typical metallization process.</td>
<td>175</td>
</tr>
<tr>
<td>6.19</td>
<td>Energy band diagram of n^+ (emitter), p (bulk), p^+ (back surface) showing the back surface field.</td>
<td>176</td>
</tr>
<tr>
<td>6.20</td>
<td>Front side metallization: (a) Ag + PbO metal paste (b) PbO is reduced by silicon present in SiNx (c) Ag + Pb alloy formation and (d) phase separation and crystallization of silver on cooling.</td>
<td>177</td>
</tr>
<tr>
<td>6.21</td>
<td>(a) Microscopic image of a finger and (b) measurement of height by detecting the change of focal length: f_1 at bottom and f_2 at top of the finger.</td>
<td>178</td>
</tr>
<tr>
<td>6.22</td>
<td>Measurement of electrical resistance of fingers.</td>
<td>179</td>
</tr>
<tr>
<td>6.23</td>
<td>A set-up for laser-based back side edge isolation.</td>
<td>180</td>
</tr>
<tr>
<td>6.24</td>
<td>Cell tester test chucks and probe heads of two popular cell testers: (a) no cell on the chuck and (b) cell on the chuck during actual test condition.</td>
<td>181</td>
</tr>
<tr>
<td>6.25</td>
<td>Power distribution of 21,000 cells manufactured at the same time using the same process.</td>
<td>182</td>
</tr>
<tr>
<td>6.26</td>
<td>(a) Conventional printing (single print) and (b) double printing technologies.</td>
<td>184</td>
</tr>
<tr>
<td>6.27</td>
<td>Cross section showing a cell with selective emitter.</td>
<td>185</td>
</tr>
<tr>
<td>6.28</td>
<td>Cross sectional diagram showing the buried contact process.</td>
<td>186</td>
</tr>
<tr>
<td>6.29</td>
<td>Cross section showing metal wrap through contact.</td>
<td>187</td>
</tr>
<tr>
<td>6.30</td>
<td>Cross section showing emitter wrap through process.</td>
<td>188</td>
</tr>
</tbody>
</table>
Fig. 6.31 Cross section showing passivated emitter rear locally diffused structure integrated with selective emitter process.

Fig. 6.32 Cross sectional diagram of passivated emitter rear totally diffused structure integrated with selective emitter process.

Fig. 6.33 Cross sectional diagram of an inter-digitated back contact cell.

Fig. 6.34 Topographical diagram of the back side showing inter-digitized back n+ and p+ metal contacts.

Fig. 6.35 Cross sectional diagram of a typical multi junction high efficiency solar cell.

Fig. 6.36 Process flow for fabrication of high efficiency multi junction solar cells.

Fig. 6.37 Monolithic bypass diode configuration.

Fig. 6.38 Cross sectional diagram showing monolithic bypass diode along with the multi junction cells.

Fig. 6.39 Mesa formation process flow.

Fig. 6.40 Example of lift-off lithography process for metal patterning.

Fig. 7.1 (a) Segment of the solar cell string with two cells after stabbing and stringing; and (b) equivalent cell diode representation.

Fig. 7.2 Diode representation of sixty-cell module.

Fig. 7.3 Typical lay-up sequence of a c-Si solar photovoltaic module manufacturing.

Fig. 7.4 A typical baseline module manufacturing process flow.

Fig. 7.5 A typical module framing equipment.

Fig. 7.6 Pre-mixed composite silicone adhesive is being dispensed in frame grove.

Fig. 7.7 Front and backside view of a module.

Fig. 7.8 Inside view of a junction box.

Fig. 7.9 Diode representation of a 72-cell module.

Fig. 7.10 Diode representation of a 96-cell module.

Fig. 7.11 (a) Configuration of 2BB bare cell and (b) configuration after tabbing-stringing and bussing.

Fig. 7.12 One diode model of solar cell.

Fig. 7.13 IV and PV curves at varying Rs; steeper curves have lower Rs.

Fig. 7.14 Current flow into bus bar from fingers and current flow out of bus bar.

Fig. 7.15 Current flow in bussing copper.

Fig. 7.16 Tabbing-stringing-bussing power loss in single cell coupons.

Fig. 7.17 Optical structure of: (a) bare cell and (b) laminated coupon.

Fig. 7.18 A tri-layer stack up with a thin film in the middle.

Fig. 7.19 Reflectivity from Air-ARC-Si (dark line) and Air-Glass-ARC-Si (lighter line) \(n_1 = 2.13, d_1 = 87 \text{ nm.} \)

Fig. 7.20 Typical reflectivity plot for IQE (dark line) and ISR (lighter line).

Figures ∑ xvii
Fig. 6.31 Cross section showing passivated emitter rear locally diffused structure integrated with selective emitter process.

Fig. 6.32 Cross sectional diagram of passivated emitter rear totally diffused structure integrated with selective emitter process.

Fig. 6.33 Cross sectional diagram of an inter-digitated back contact cell.

Fig. 6.34 Topographical diagram of the back side showing inter-digitized back n+ and p+ metal contacts.

Fig. 6.35 Cross sectional diagram of a typical multi junction high efficiency solar cell.

Fig. 6.36 Process flow for fabrication of high efficiency multi junction solar cells.

Fig. 6.37 Monolithic bypass diode configuration.

Fig. 6.38 Cross sectional diagram showing monolithic bypass diode along with the multi junction cells.

Fig. 6.39 Mesa formation process flow.

Fig. 6.40 Example of lift-off lithography process for metal patterning.

Fig. 7.1 (a) Segment of the solar cell string with two cells after stabbing and stringing; and (b) equivalent cell diode representation.

Fig. 7.2 Diode representation of sixty-cell module.

Fig. 7.3 Typical lay-up sequence of a c-Si solar photovoltaic module manufacturing.

Fig. 7.4 A typical baseline module manufacturing process flow.

Fig. 7.5 A typical module framing equipment.

Fig. 7.6 Pre-mixed composite silicone adhesive is being dispensed in frame grove.

Fig. 7.7 Front and backside view of a module.

Fig. 7.8 Inside view of a junction box.

Fig. 7.9 Diode representation of a 72-cell module.

Fig. 7.10 Diode representation of a 96-cell module.

Fig. 7.11 (a) Configuration of 2BB bare cell and (b) configuration after tabbing-stringing and bussing.

Fig. 7.12 One diode model of solar cell.

Fig. 7.13 IV and PV curves at varying Rs; steeper curves have lower Rs.

Fig. 7.14 Current flow into bus bar from fingers and current flow out of bus bar.

Fig. 7.15 Current flow in bussing copper.

Fig. 7.16 Tabbing-stringing-bussing power loss in single cell coupons.

Fig. 7.17 Optical structure of: (a) bare cell and (b) laminated coupon.

Fig. 7.18 A tri-layer stack up with a thin film in the middle.

Fig. 7.19 Reflectivity from Air-ARC-Si (dark line) and Air-Glass-ARC-Si (lighter line) \(n_1 = 2.13, d_1 = 87 \text{ nm.} \)

Fig. 7.20 Typical reflectivity plot for IQE (dark line) and ISR (lighter line).

© in this web service Cambridge University Press www.cambridge.org
Fig. 7.21 Current generation as a function of wavelength: bare cell (lighter line) and laminated cell (dark line). 224
Fig. 7.22 I_{OP} variation with n_{ARC} for optimized d_{ARC}. 225
Fig. 7.23 Diode representation of 60-cell module with bypass diodes with one shaded cell. 228
Fig. 7.24 Equivalent circuit of: (a) ideal photovoltaic cell and (b) with R_S and R_{Sh}. 230
Fig. 7.25 Equivalent circuit of a module with ideal photovoltaic cell diode with one cell completely shaded. 230
Fig. 7.26 Equivalent circuit of a module with R_S and R_{Sh} added to the shaded cell diode. 231
Fig. 7.27 I-V characteristics of module with one completely shaded cell. The characteristic of normal module with no shaded cell has also been shown. 232
Fig. 7.28 Representative equivalent circuit of module with one cell partially (50%) shaded. 234
Fig. 7.29 I-V characteristics of a module having one cell 50% shaded. Normal module I-V characteristics are also shown. 235
Fig. 7.30 Cross sectional diagram of: (a) single junction a-Si cell and (b) tandem junction a-Si cells. 237
Fig. 7.31 Cross sectional diagram of micromorph silicon tandem solar cell. 238
Fig. 7.32 Thin film process flow chart. 238
Fig. 7.33 a-Si thin film cell structure. 239
Fig. 7.34 Schematic of a-Si thin film cell structure. 239
Fig. 7.35 Cross sectional diagram of: (a) single-sided and (b) double-sided HIT cell structures. 240
Fig. 7.36 Cross sectional diagram of CdS/CdTe thin film solar cell. 242
Fig. 7.37 Cross sectional diagram of CIGS thin film solar cell. 242
Fig. 8.1 Segment of the solar cell string after tabbing and stringing. 262
Fig. 8.2 Cell coupon after tabbing and stringing for tab pull strength measurement. 262
Fig. 8.3 Tab pull strength measurement setup. 263
Fig. 8.4 EL image of defective 60-cell module. 264
Fig. 8.5 Module with severe micro-crack problem. 265
Fig. 8.6 ‘Snail walk’ marks on the module front side. 266
Fig. 8.7 EL image of a mono-crystalline cell: fingers and bus bar are visible. 266
Fig. 8.8 EL image of module with no micro-crack and other defects. 267
Fig. 8.9 Main component of electro-luminescence image test set up. 268
Fig. 8.10 Typical insulation test set up. 269
Fig. 8.11 Electrical equivalent circuit of dry insulation measurement. 272
Fig. 8.12 Electrical equivalent circuit of wet insulation measurement when the backside of the module is not in water (wet insulation 1). 272
Fig. 8.13 Electrical equivalent circuit of wet insulation measurement when the backside of the module is also in water (wet insulation 2). 273
Fig. 8.14 Equivalent resistance network circuit of dry insulation measurement. 273
Fig. 8.15 Detached junction box. 274
Fig. 8.16 Junction box with good adhesion. 274
Fig. 8.17 Junction box adhesion strength and curing time: (a) after 2 hrs of curing and (b) after 10 hrs of curing. 275
Fig. 8.18 Infrared image profile of a module with one hot spot. 276
Fig. 8.19 Graphical representation of hot spot temperature profile of infrared image of Fig. 8.18. 276
Fig. 8.20 Infrared image profile of a module with two hot spots. 277
Fig. 8.21 Graphical representation of hot spot temperature profile of infrared image of Fig. 8.20. 277
Fig. 8.22 Typical irradiance spectrum of a Xenon arc lamp: Irradiance (in Wm$^{-2}$) vs wavelength (in nm). 278
Fig. 8.23 Major component of a typical sun simulator. 279
Fig. 8.24 Pulse characteristic-I of a pulsed sun simulator. 280
Fig. 8.25 Pulse characteristic-II of a pulsed sun simulator. 280
Fig. 8.26 Spire sun simulator: light source at the bottom and module placed on top with the front side down facing the light. 283
Fig. 8.27 Sun simulator from eternal sun: light source at the top and module to be inserted from bottom using a trolley. 283
Fig. 8.28 (a) Tunnel-type sun simulator from PASAN - front side view: light source at the back (b) Tunnel-type sun simulator from PASAN - rear view showing the light source. 284
Fig. 8.29 Screen shot of a reference module tested in a sun simulator. 286
Fig. 8.30 Detailed I-V characteristics of a 235Wp module. SSI-M6-235 is a brand name and stands for Solar Semiconductor International (SSI)-Multi 6 Inch (M6)-235Wp. 287
Fig. 8.31 Detailed I-V characteristics of a 285Wp module. SSI-M6-285 is a brand name and stands for Solar Semiconductor International (SSI)-Multi 6 Inch (M6)-285Wp. 287
Fig. 8.32 Bath tub curve defining failure pattern with time. 289
Fig. 8.33 Normal distribution and corresponding reliability function and hazard rate function. 291
Fig. 8.34 Exponential distribution function applicable to constant failure rate. Corresponding reliability function and hazard rate function are also shown. 291
Fig. 8.35 Weibull distribution and corresponding reliability function and hazard rate function. 292
Fig. 8.36 Lognormal distribution and corresponding reliability function and hazard rate function. 292
Fig. 8.37 Hot spot visual defects: air bubble due to de-lamination and cell burning. 296
Fig. 8.38 Hot spot visual defects: burning of EVA-back sheet. 297
Fig. 8.39 A typical environment chamber for UV preconditioning and other reliability tests. 297
Figures

<p>| Fig. 8.40 | Yellowing of the EVA due to UV exposure. | 298 |
| Fig. 8.41 | Temperature profile for typical thermal cycle test. | 299 |
| Fig. 8.42 | An environmental chamber loaded with seven modules. A total of 10 modules can be loaded at a time. | 299 |
| Fig. 8.43 | EL picture of a 72-cell module after TC200 test. Several shunts are seen. The biggest one is circled. | 300 |
| Fig. 8.44 | Bubble on the back sheet due to damp heat test. | 301 |
| Fig. 8.45 | Cell shrinkage due to prolonged damp heat test (DH-3000). | 301 |
| Fig. 8.46 | Progressive cell shrinkage as damp heat test progresses: (a) DH1000: no shrinkage (b) DH3000: shrinkage initiated from the periphery (c) DH3500: shrinkage starts encroaching and (d) DH4000: severe shrinkage due to encroachment. | 302 |
| Fig. 8.47 | Crack on the back sheet due to damp heat test. | 302 |
| Fig. 8.48 | Temperature profile for typical humidity freeze test. | 303 |
| Fig. 8.49 | Bubble on the back sheet resulting from humidity freeze test. | 303 |
| Fig. 8.50 | Bubble on the back sheet due to bad cells during humidity freeze test. This 60-cell module is made using 30 bad cells (left half) and 30 good cells (right half). | 304 |
| Fig. 8.51 | Torn junction box cover during humidity freeze (HF30) test. | 305 |
| Fig. 8.52 | Back sheet wear out due to humidity freeze (HF40) test. | 305 |
| Fig. 8.53 | Mechanical load test using sand bags. | 306 |
| Fig. 8.54 | ‘Ice Gun’ hail test set up. | 307 |
| Fig. 8.55 | Qualification/certification test plan for a new module type. | 309 |
| Fig. 8.56 | Cross section of a typical module showing various current paths under high voltage stress. | 311 |
| Fig. 8.57 | PID test set up. | 311 |
| Fig. 9.1 | Solar PV-value chain. | 321 |
| Fig. 9.2 | SPV system classification. | 322 |
| Fig. 9.3 | Representative characteristics of solar irradiance during a day for a fixed system. | 324 |
| Fig. 9.4 | Representative characteristics of solar irradiance during a day for a tracking system. | 325 |
| Fig. 9.5 | Various radiation components due to greenhouse effect. | 327 |
| Fig. 9.6 | Block diagram of a solar inverter. | 329 |
| Fig. 9.7 | Block diagram of a power conditioning unit. | 329 |
| Fig. 9.8 | A typical SPV system with 10 modules. | 331 |
| Fig. 9.9 | A typical I-V characteristic of a string with five modules. | 331 |
| Fig. 9.10 | A typical I-V characteristic of two strings connected in parallel. Each string has five modules. | 331 |
| Fig. 9.11 | Configuration of a DC coupled stand-alone system. | 337 |
| Fig. 9.12 | Configuration of a DC coupled grid interactive system with back-up. | 338 |
| Fig. 9.13 | Configuration of AC coupled grid interactive system without back-up. | 339 |
| Fig. 9.14 | Configuration of AC coupled grid interactive system with back-up. | 339 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 9.15</td>
<td>A grid interactive 100kWp SPV system.</td>
<td>340</td>
</tr>
<tr>
<td>Fig. 9.16</td>
<td>A simplified block diagram of AC solar pump.</td>
<td>340</td>
</tr>
<tr>
<td>Fig. 9.17</td>
<td>Solar pump being used for irrigation.</td>
<td>340</td>
</tr>
<tr>
<td>Fig. 9.18</td>
<td>Conventional cell tower power supply.</td>
<td>341</td>
</tr>
<tr>
<td>Fig. 9.19</td>
<td>Cell tower power supply with SPV as an auxiliary power source.</td>
<td>342</td>
</tr>
<tr>
<td>Fig. 9.20</td>
<td>Cell tower with SPV installation.</td>
<td>342</td>
</tr>
<tr>
<td>Fig. 9.21</td>
<td>Working principle of solar LED street light.</td>
<td>343</td>
</tr>
<tr>
<td>Fig. 9.22</td>
<td>Animated and actual solar LED street light system.</td>
<td>343</td>
</tr>
<tr>
<td>Fig. 9.23</td>
<td>Configuration of central inverter-based SPV power plant.</td>
<td>344</td>
</tr>
<tr>
<td>Fig. 9.24</td>
<td>Configuration of string inverter-based SPV power plant.</td>
<td>344</td>
</tr>
<tr>
<td>Fig. 9.25</td>
<td>A part of fixed SPV power plant.</td>
<td>345</td>
</tr>
<tr>
<td>Fig. 9.26</td>
<td>A part of tracking SPV power plant.</td>
<td>345</td>
</tr>
<tr>
<td>Fig. 10.1</td>
<td>Configuration of Buck-Boost DC-DC converter.</td>
<td>360</td>
</tr>
<tr>
<td>Fig. 10.2</td>
<td>Definition of time period and duty cycle of a pulse width modulated clock.</td>
<td>360</td>
</tr>
<tr>
<td>Fig. 10.3</td>
<td>Schematic of a maximum power point tracking controller.</td>
<td>363</td>
</tr>
<tr>
<td>Fig. 10.4</td>
<td>Current–voltage and power–voltage characteristics of solar panels.</td>
<td>364</td>
</tr>
<tr>
<td>Fig. 10.5</td>
<td>Non-ideal I-V and P-V characteristics with more than one maximum power point.</td>
<td>365</td>
</tr>
<tr>
<td>Fig. 10.6</td>
<td>Incremental conduction method to determine maximum power point.</td>
<td>365</td>
</tr>
<tr>
<td>Fig. 10.7</td>
<td>Typical efficiency characteristics of an inverter.</td>
<td>367</td>
</tr>
<tr>
<td>Fig. 10.8</td>
<td>I-V characteristics of two modules with same power but having mismatch in voltage (V_m) and current (I_m).</td>
<td>369</td>
</tr>
<tr>
<td>Fig. 10.9</td>
<td>I-V characteristics of configurations when two identical modules (module type 1 or module type 2) are connected in parallel.</td>
<td>369</td>
</tr>
<tr>
<td>Fig. 10.10</td>
<td>I-V and P-V characteristics of configurations when two mismatched modules (module type 1 and module type 2) are connected in parallel.</td>
<td>370</td>
</tr>
<tr>
<td>Fig. 10.11</td>
<td>Micro-inverter configuration involving two modules.</td>
<td>371</td>
</tr>
<tr>
<td>Fig. 10.12</td>
<td>Charging and discharging configurations of a Pb-acid battery.</td>
<td>373</td>
</tr>
<tr>
<td>Fig. 10.13</td>
<td>Cycle number and depth of discharge of battery.</td>
<td>374</td>
</tr>
<tr>
<td>Fig. 10.14</td>
<td>Maximum depth of discharge allowed at cooler climates for Pb-acid battery.</td>
<td>376</td>
</tr>
<tr>
<td>Fig. 10.15</td>
<td>Deviation of capacity from the rated capacity of a representative C/20 Pb-acid battery.</td>
<td>377</td>
</tr>
<tr>
<td>Fig. 10.16</td>
<td>Capacity of a representative C/20 Pb-acid battery as a function of temperature.</td>
<td>378</td>
</tr>
<tr>
<td>Fig. 10.17</td>
<td>A 240V, 400Ah capacity battery configured from 48V, 100Ah batteries.</td>
<td>381</td>
</tr>
<tr>
<td>Fig. 10.18</td>
<td>A 240V, 400Ah capacity battery configured from 48V, 200Ah batteries.</td>
<td>381</td>
</tr>
<tr>
<td>Fig. 10.19</td>
<td>Blocking diode for blocking the power flowing from battery to module at night.</td>
<td>382</td>
</tr>
<tr>
<td>Fig. 10.20</td>
<td>Blocking diode for blocking power flowing from one string to another.</td>
<td>383</td>
</tr>
<tr>
<td>Fig. 10.21</td>
<td>Single line diagram of a typical net metering configuration.</td>
<td>384</td>
</tr>
</tbody>
</table>
Figures

Fig. 10.22 Month-wise energy output simulation results for a 20 MWp a-Si-based plant at Kutch, India (Latitude: 24°). 387
Fig. 10.23 Comparison between PVsyst simulation and actual generation. 389
Fig. 10.24 Performance ratio simulation results. Example is for a 20 MWp a-Si-based plant at Kutch, India (Latitude: 24°). 391
Fig. 10.25 Comparison between PVsyst simulation and actual performance ratio. 391
Fig. 10.26 Simplistic comparison of LCOE of electricity generated by coal and solar photovoltaic-based power plants. 393
Tables

- **Table 1.1** Band Gap and Electron Affinity of Some Important Semiconductors
- **Table 2.1** Advantages of Silicon as a Semiconductor for Solar Photovoltaics
- **Table 2.2** Specifications of Semicondutor-Grade Silicon (Sze [2])
- **Table 2.3** Comparison of Siemens and Silane Processes for Production of Polysilicon
- **Table 2.4** Semiconductor Grade vs Solar Grade Silicon
- **Table 2.5** Distribution Coefficients $k_0 = C_S/C_L$ of Common Impurities in Si and GaAs where C_S/C_L are Concentrations of Impurities in Solid and Liquid Phase respectively
- **Table 2.6** Energy Band Gap Parameters E_g for Semiconductors
- **Table 2.7** Temperature Coefficient of Energy Efficiency of Different Types of Solar Cells (Paranthaman et al. [9])
- **Table 2.8** Recombination Constant in Different Semiconductors at 300 K
- **Table 2.9** Surface State Densities of Silicon
- **Table 3.1** Efficiencies of CIGS Cells on Different Substrates
- **Table 3.2** Properties of typical thin film CdS-based, CdTe and a-Si solar cells
- **Table 3.3** Band gap vs qV_{oc} Loss in Perovskite Solar Cells
- **Table 4.1** Structure of Triple Layer Tandem cell with Ge substrate
- **Table 4.2** Structure of Triple Layer Tandem cell with GaInAs substrate
- **Table 4.3** Solar Cell efficiencies: Laboratory vs Panel
- **Table 6.1** Summary of Solar Cell Technologies
- **Table 6.2** Some of the Important Representative Specifications of c-Si Starting Wafer
- **Table 7.1** Description of the Cells used for Cell Coupons
- **Table 7.2** Electrical Data of Cell Coupons Pre- and Post-T&S
- **Table 7.3** Change of I_{sc} (ΔI_{sc}) for 2 Bus Bars and 3 Bus Bars Cells with Different Tabbing Ribbon Sizes
- **Table 7.4** Extracted Parameters of One Diode Equivalent Circuit of Figure 7.1
- **Table 7.5** Measured CTM Conversion Loss/Gain
- **Table 7.6** STC Power Gain with ARC Cover Glass
xxiv • Tables

Table 7.7 Gain with Outdoor Testing of ARC Cover Glass 227
Table 7.8 Gain with Outdoor Testing of ARC Cover Glass During Early Morning 227
Table 7.9 Average Gain with Outdoor Testing During 10AM to 2PM 227
Table 7.10 Simplistic View of Installation and Finance Cost Estimate of a 100 MWp SPV Plant 245
Table 7.11 Simplistic View of Installation and Finance Cost Estimate of a 100 MWp SPV Plant for Different Equity to Loan Ratio 246
Table 7.12 Typical BOM and Cost for 60-cell and 72-cell c-Si Module Manufacturing 248
Table 7.13 BOM Cost for 60-Cell Module with 17%, 18% and 19% Cell Efficiencies Assuming Same US$/Wp Price of Cells for all Efficiencies and Zero CTM Loss 249
Table 7.14 BOM Cost for 60-Cells Module with 17%, 18% and 19% Cell Efficiencies when US$/Wp Changes with Efficiency; CTM Loss is Zero 250
Table 7.15 BOM Cost for 60-Cell Module with 17%, 18% and 19% Cell Efficiencies Assuming Same US$/Wp Price of Cells for all Efficiencies (CTM Loss is not Zero and Changes with Efficiency) 251
Table 7.16 BOM Cost for 60-Cells Module with 17%, 18% and 19% Cell Efficiency Assuming Same US$/Wp Changes with Efficiency (CTM Loss is not Zero and also Changes with Efficiency) 251
Table 7.17 Wattage Gain and Cost Impact of ARC-Coated Glass giving Different Gain (0.5%, 1.0%, 1.5% and 2.0%) 252
Table 8.1 Summary of Characterization used for a Typical c-Si SPV Module Manufacturing 261
Table 8.2 Dry Insulation Test Results (Module Size: 1.4 m²) 270
Table 8.3 Wet Insulation Test Results when the Backside of the Module is not in Water (Module Size: 1.4 m²) 270
Table 8.4 Wet Insulation Test Results when the Backside of the Module is in Water (Module Size: 1.4 m²) 270
Table 8.5 Values of I₀ and E₀ of Equation (8.3) 271
Table 8.6 Infrared Image Information Extracted from Figures 8.18–8.19 276
Table 8.7 Classification of Solar Simulator 279
Table 8.8 Total Irradiance in Different Spectral Range for AM1.5G 279
Table 8.9 Lot Size, Sample Size and Allowed Number of Failure as per Acceptable Quality Levels 293
Table 8.10 List of Major Accelerated Life Test for Qualification 296
Table 8.11 Impact Locations for Hail Test 308
Table 8.12 Re-test Guidelines for BOM 310
Table 8.13 Electrical Parameters of Modules, made with Cells Obtained from Three Different Vendors, Before and After PID Test 312
Table 9.1 Broad Technology Options 321
Table 9.2 Typical Temperature Values for Different Technologies 327
Table 9.3 Possible String Design Options for a 30kWp SPV System 333
Table 9.4 Typical Parameters of Modules made with Different Technologies 334
Table 9.5 Major Installation Parameters per MW_P, SPV Plant for Different Technologies

Table 9.6 Example of Load Profile Details

Table 9.7 Major Cost component of a 100kW_P, Off-Grid/Grid Interactive SPV System

Table 9.8 Load Profile of Type I Hatchery

Table 9.9 Load Profile of Type II Hatchery

Table 9.10 Possible Configurations for Type I

Table 9.11 Possible Configuration for Type II

Table 9.12 Unit Cost (kWh) of Power Generated from PV for Type I

Table 9.13 Unit Cost (kWh) of Power Generated from PV for Type II

Table 9.14 Comparison between Thermal (Coal) and SPV Power Plant

Table 10.1 Efficiency vs Power Chart of a Particular Inverter

Table 10.2 Efficiencies at Different Utilization for Calculation of Euro Efficiency (\(\eta_{\text{Euro}}\))

Table 10.3 Summary of PVSyst Simulation Results: Example is for a 20 MW_P a-Si-Based Plant at Kutch, India (Latitude: 24°)

Table 10.4 Representative Loss Mechanism for the Whole Year

Table 10.5 Representative Capacity Utilization Factor (CUF) of Different Types of Power Plants
Preface

The growth and demand for Solar Photovoltaic (SPV) energy systems has been strong and in line with the increasing importance of renewable energy. Worldwide demand and production of SPV systems has been growing at a compound annual growth rate of more than 30% over the last decade. There have been significant advances in technology, spanning the entire value chain consisting of solar cells, modules and balance-of-system (BOS) components. This has resulted in an increase in efficiency and a significant cost reduction over the years, making SPV systems viable both in small stand-alone and large grid-connected applications.

Solar energy, which is the Earth’s most available energy source, can be converted to electricity providing scalable and clean power requiring minimal maintenance. This book deals with the subject of Solar Photovoltaics in some detail covering the basics as well as advanced topics. All the important areas of SPV, covering both science and technology, have been addressed in this book. Commencing with the basic principles, different types of solar cells from bulk silicon (Si) to thin film cells are described comprehensively. Tandem concentrator cells now provide the highest efficiencies of 43%. Newer low cost alternatives, such as organics and perovskites, are also discussed. Manufacturing details have been covered in great detail. The basic cost and investment calculations of SPV manufacturing and systems leading to economic viability have also been included. These aspects are generally not covered in most of the books published in this field. Several practical and state-of-the-art manufacturing and system design details have been presented based on the experience of one of the authors (J. N. Roy). This book should be useful for students studying this important subject, who eventually want to pursue careers in this field. The book should be also useful for researchers and industry personnel who want to have a thorough understanding of the subject. Each chapter has illustrations and tables. There are several examples and exercises throughout the book to help consolidate thorough learning of the subject.

Chapter 1 presents a general introduction to the subject of solar energy in the context of global warming. Solar insolation and distribution are presented and some basic terms are defined. This is followed by the principles of operation of SPV devices, device characteristics, criteria for choice of materials, and critical parameters for efficient operation. Different types of cells are introduced and the invention of Si and CdS-based PV cells described.
Chapter 2 deals with the dominant type of PV cells viz. c-Si and mc-Si that presently have 85% of market share. Starting with the often-neglected subject of the production of semiconductor-grade polysilicon, this chapter discusses single crystal growth, directional solidification and properties of single crystal vs multi-crystalline silicon materials and solar cells. These growth techniques were perfected in the laboratory of one of the authors (D. N. Bose). Progress in thin film silicon cells and structure and performance of a few high-efficiency Si cells are also discussed.

In Chapter 3, thin film solar cells, alternatives to cells based on bulk Si, are compared with reference to their advantages and disadvantages. The principal types are amorphous Si (a-Si), CdS-CIGS and CdS-CdTe, whose operation and performance are described. New emerging types include Earth-abundant CZTE and newly discovered perovskite cells. Stability is a major concern especially for a-Si and for perovskite cells. The physics and operating principles of these materials have novel features, not incorporated so far in textbooks.

Chapter 4 deals with special type of thin film cells based on III-V compounds GaAs, InP and their alloys, capable of highest efficiencies. These cells are grown epitaxially on single crystal substrates by MOVPE, a technique employed in the laboratory of one of the authors (D. N. Bose). When used in tandem, these cells form the basis of concentrator solar cells that operate at higher temperatures and require Sun tracking. The PEC cells developed in the laboratory of one of the authors (D. N. Bose) are another type that use semiconductor materials as photoelectrodes immersed in a suitable electrolyte. An example is dye-sensitized TiO$_2$ cells called Grätzel cells. Though simple in concept, these cells still have stability problems.

Chapter 5 describes the operation of novel solar cells based on polymers and organic materials whose principles of operation are presented. Illumination results in the generation of bound excitons in these materials that decay into free carriers. The cells may be classified into bulk and heterojunction types and can consist of organic/inorganic composites and nanocrystals. These cells are projected to have advantages of low-cost methods of preparation over large areas. Their laboratory efficiencies are rising rapidly, but environmental stability remains a challenge.

Chapter 6 covers the manufacturing details of important types of solar cells. One of the authors (J. N. Roy) has experience of setting up and running a cell manufacturing plant. Characterization techniques, which are an integral part of the manufacturing, have also been discussed in some detail. Apart from c-Si, high efficiency multi-junction (MJ) cell manufacturing has also been addressed. Chapter 7 deals with module manufacturing starting with c-Si. Other thin film SPV manufacturing processes, including those for a-Si, CIGS and CdTe, have also been described in this chapter. Some of the detailed modelling, such as high voltage insulation, cell-to-module (CTM) conversion loss, are based on one of the author’s (J. N. Roy) experience during his tenure in a reputed SPV company. The cost structure and selling price have been explained so that these important aspects are kept in mind during technology development and manufacturing.

Chapter 8 discusses, in detail, characterization techniques employed during SPV module manufacturing. Electrical testing, which is the most important aspect of SPV characterization, has been discussed separately, giving details of some of the popular testers, known as ‘Sun Simulators’, used for R&D and high volume manufacturing. The reliability and certification standards have also been discussed in this chapter. Reliability prediction through modelling and reliability tests
and standards presently employed for SPV industry has been discussed in some detail. Since the authors have significant expertise in the field of VLSI, a comparison with the reliability test and standards employed in the VLSI industry has been highlighted in this chapter. Important topics such as potential induced degradation (PID), which has recently been found to cause reliability problems, have also been taken up in this chapter. Such a comprehensive coverage of the subjects covered in this chapter is probably not available in any other book.

Chapters 9 and 10 cover the design and implementation of SPV systems. The introduction of SPV systems is presented in Chapter 9. The cost aspects, which are very important for the viability and return-of-investment (ROI) point of view, are discussed taking some real life examples. Simple methods of energy calculation, which have been widely used for smaller systems, have been elaborated on with practical examples. This chapter is intended to give an overview of SPV systems. Specific design details of important BOS components have been discussed in Chapter 10. Energy calculations, benchmarking, viability, etc. of large SPV systems have been dealt with in detail in this chapter. These chapters (9 and 10) together give a comprehensive overview covering all categories of SPV systems.
Acknowledgments

During my tenure at Solar Semiconductor Inc., my R&D/Engineering/Quality/Reliability teams had brilliant people. It was my privilege to work with them and their support is deeply acknowledged. Support of other members of the senior management team of Solar Semiconductor Inc. is also acknowledged. I specially acknowledge the support of S. S. N. Prasad, who was then one of the Directors of Solar Semiconductor and has been a good friend of mine since 1984.

Although the materials presented in this book are primarily based on my learning at Solar Semiconductor Inc., the tenure at IIT Kharagpur helped me a great extent to decide about the final content and presentation style. The class notes for teaching and interaction with students had a great influence on the final shape of my portion of the manuscript. I am thankful to all my students and the faculty colleagues in Energy School (SESE) at IIT Kharagpur. I am also thankful to the present IIT Kharagpur Director, Professor P. P. Chakraborty, popularly known as PPC, for giving me a conducive atmosphere for writing this book.

Encouragement from my family, particularly my wife Mahua and daughter Sanjukta (Puja), played a motivating role for taking up writing my second book. My first book in the area of VLSI was also jointly written with Professor D. N. Bose, who was my mentor during my doctoral work at IIT Kharagpur. His deep knowledge of the subject has always inspired me. I deeply acknowledge his support for reviewing my part of the manuscript and providing valuable inputs.

J. N. Roy

I am deeply grateful to my graduate students and research staff at IIT Kharagpur for the development of the Semiconductor Materials Laboratory where Solar Photovoltaics was one of the primary areas of R&D. Post-graduate courses on ‘Solar Energy’ and ‘Amorphous Semiconductors’ were taught and laboratory experiments developed. In particular, I would like to thank Senior Technical Staff members A. R. Haldar and T. K. Choudhury for their untiring effort in the installation and maintenance of state-of-the-art equipment. It has been a pleasure collaborating with my former doctoral student Dr J. N. Roy on writing this book. He has had extensive experience in the semiconductor industry both in India and abroad that is apparent in his valuable contribution.

The research on renewable energy was sponsored and funded by the Department of Science and Technology and Ministry of New & Renewable Energy Sources, to whom I would like to record my thanks.

D. N. Bose