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1 Classical Mechanics

Classical mechanics is the cornerstone of the GRE, making up

20% of the exam, and at the same time has the dubious distinc-

tion of being the subject that turns so many people away from

physics. Your first physics class was undoubtedly a mechan-

ics class, at which point you probably wondered what balls,

springs, ramps, rods, and merry-go-rounds had to do in the

slightest with the physics of the real world. So rather than

(a) attempt the impossible task of covering your 1000-page

freshman-year textbook in this much shorter reference, or (b)

risk turning you away from physics before you’ve even taken

the exam, we’ll structure this chapter a little differently than

the rest of the book. We’re not going to review such things as

Newton’s laws, force balancing, or the definition of momen-

tum; you should know these things in your sleep, or the rest

of the exam will seem impossibly hard. Rather than review

basic topics, we’ll review standard problem types you’re likely

to encounter on the GRE. The more advanced topics will get

their own brief treatment as well. After finishing this chapter,

you will have reviewed nearly all the material you’ll need for

the classical mechanics section of the test, but in a format that

is much more useful for the way the problems will likely be

presented on the test. If you need a more detailed review of

any of these topics, just open up any undergraduate physics

text.

1.1 Blocks

One of the first things you learned in the first semester of

freshman year physics was probably how to balance forces

using free-body diagrams. Rather than rehash that discus-

sion, which you can find in absolutely any textbook, we’ll

review it through a series of example problems that are GRE

favorites. They involve objects, usually called “blocks,” with

certain masses, doing silly things like sitting on ramps, being

pushed against springs, and traveling on carts. So here we go.

1.1.1 Blocks on Ramps

Here’s a basic scenario (Fig. 1.1): a block of mass m is on a

ramp inclined at an angle θ , and suppose we want to know

the coefficient of static friction μ required to keep it in place.

The usual solutionmethod is to resolve any forces F into com-

ponents along the ramp (F‖) and perpendicular to the ramp

(F⊥). Rather than fuss with trigonometry or similar triangles,

we can just do this by considering limiting cases, a theme that

we’ll return to throughout this book. In this case, we have to

resolve the gravitational force Fg . If the ramp is flat (θ = 0),

then there is no force in the direction of the ramp, so grav-

ity acts entirely perpendicularly, and Fg,‖ = 0. On the other

hand, if the ramp is sheer vertical (θ = π/2), then gravity acts

entirely parallel to the ramp (Fg,⊥ = 0), and the block falls

straight down. Knowing that there must be sines and cosines

involved, and the magnitude of Fg ismg, this uniquely fixes

Fg,‖ = mg sin θ , Fg,⊥ = mg cos θ .

For the block not to accelerate perpendicular to the ramp, we

need the perpendicular forces to balance, which fixes the nor-

mal force to be N = mg cos θ . Then the frictional force is

Ff = μmg cos θ , which must balance the component of grav-

ity parallel to the ramp, Fg,‖ = mg sin θ . Setting these equal

gives

μmg cos θ = mg sin θ =⇒ μ = tan θ .
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2 Classical Mechanics
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Figure 1.1 Free-body diagram of forces for a block on an inclined

ramp.

Again, we can check this by limiting cases. If θ = 0, then we

don’t need any friction to hold the block in place, and μ = 0.

If θ = π/2, we need an infinite amount of friction to glue

the block to the ramp and keep if from falling vertically, so

μ = ∞. Both of these check out.

Standard variants on this problem include applied forces

and blocks attached to pulleys which hang over the side of the

ramp, but surprisingly, neither the basic problem nor its vari-

ants have shown up on recent exams. Perhaps it is considered

too standard by the GRE, such that most students will have

memorized the problem and its variants so completely that

it’s not worth testing. In any case, consider it a simple review

of how to resolve forces into components by using a limiting-

cases argument, as this can potentially save you a lot of time

on the exam.

1.1.2 Falling and Hanging Blocks

The next step up in complexity is to have two or more

blocks interacting – for example, two blocks tied together with

a rope, falling under the influence of gravity, or the same

blocks hanging from a ceiling. These kinds of questions test

your ability to identify precisely which forces are acting on

which blocks. A foolproof, though time-consuming, method

is to use free-body diagrams, where you draw each individual

block and only the forces acting on it. This avoids the pit-

fall of double-counting, or applying the same force twice to

two different objects, and ensures that you take into careful

account the action/reaction balance of Newton’s third law. See

Example 1.1.

Sometimes, though, simple physical reasoning will suffice,

especially in situations where the blocks aren’t really distinct

objects. For example, consider placing one block on top of

another and letting them both fall under the influence of grav-

ity. If we ignore air resistance, there is absolutely no physical

distinction between the block–block system, and one larger

block with the combined mass of both. In fact, a variant

of precisely this argument was used in support of Galileo’s

discovery that the gravitational acceleration of objects was

independent of their mass. We could even put a massless

string between the two blocks, and the argument would still

hold: since the whole system must fall with acceleration g,

there can be no tension in the string. (Do the free-body anal-

ysis and check this yourself!) When interactions between the

blocks become important, for example when they exert forces

on one another through friction, then we must usually treat

them as independent objects, though, as we’ll see in Section

1.1.3, there are cases where the same kind of reasoning works.

EXAMPLE 1.1

A 5 kg block is tied to the bottom of a 20 kg block with a massless string. When an experimenter holds the 20 kg

block stationary, the tension in the string is T1. The experiment is repeated with the 20 kg block hanging under the

5 kg block, and the tension in the string is now T2. What is T2/T1?

Our physical intuition tells us that T1/g = 5 kg and T2/g = 20 kg, since in both cases the function of the string

is to support the weight of the lower block. So we expect T2/T1 = 4. This intuition is confirmed by a limiting-cases

analysis: if the mass of the lower block is zero, then no matter the mass of the upper block, the string just dangles

below the block with no tension, so the tensionmust be proportional to the mass of the lower block but independent

of the mass of the upper one.

Let’s check the intuition by doing a full free-body analysis. In order to treat both cases at once, call the mass of the

top blockm1 and that of the bottom blockm2, as in Fig. 1.2. The forces on the two blocks are illustrated in Fig. 1.3. F

is the force applied by the experimenter. Notice how the string tension acts up on the bottom block but down on the

top block, and that the magnitude of T is the same for both blocks. For the purposes of the GRE, this is the definition

of a massless string: it carries the same tension at every point. Setting the acceleration ofm2 equal to zero, since it is

stationary, let’s solve for T: T − m2g = 0, so indeed, T = m2g, the weight of the bottom block, and our intuition is

correct. In this case it wasn’t even necessary to consider the forces on the top block, a convenient time-saver!
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1.1 Blocks 3

EXAMPLE 1.1 (Cont.)

m1

m2

Figure 1.2 Two blocks suspended from one another by a massless string.

F T

Tm1g m2g

m1 m2

Figure 1.3 Free-body diagram for two blocks on a string.

1.1.3 Blocks in Contact

F
M

m

F
M

m

Figure 1.4 Typical setups for blocks moving together with friction.

There are two standard setups for these kinds of problems,

illustrated in Fig. 1.4. Both get at all the core concepts of force

balancing, Newton’s second and third laws, and friction. In

the second setup, you might be asked, given friction between

the two blocks, what the minimum force is such that the mass

m does not fall down due to gravity, or, if m is placed on the

surface as well, how the force of one block on another changes

depending on whether F is applied to M or m. As with the

falling and hanging blocks, the key is to remember that the

blocks are independent objects, so wemust consider the forces

on each independently. See Example 1.2.

1.1.4 Problems: Blocks

1. A block of mass 5 kg is positioned on an inclined plane at

angle 45◦. A force of 10 N is applied to the block, parallel to

the ground. If the coefficient of kinetic friction is 0.5, which

of the following is closest to the acceleration of the block?

Assume there is no static friction.

F

45°

(A)
√
2 m/s2 up the ramp

(B)
√
2 m/s2 down the ramp

(C) 5
√
2 m/s2 up the ramp

(D) 5
√
2 m/s2 down the ramp

(E) 25
√
2 m/s2 down the ramp

3m

2m

m

T2

T1

T3

2. Three blocks of masses m, 2m, and 3m are suspended

from the ceiling using ropes, as shown in the diagram.

Which of the following correctly describes the tension in

the three rope segments, labeled T1, T2, and T3?

(A) T1 < T2 < T3

(B) T1 < T2 = T3
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4 Classical Mechanics

EXAMPLE 1.2

Here’s an example using the setup shown in Fig. 1.4 (left): A block of mass 2 kg sits on top a block of mass

5 kg, which is placed on a frictionless surface. A force of 10 N is applied horizontally to the 5 kg block. What

is the minimum coefficient of static friction between the two blocks such that they move together without

slipping?

We could do a full free-body diagram of all the forces in the problem, but simple physical reasoning provides

a useful shortcut. Note that, as long as the blocks don’t slip, the two blocks are really behaving as one object of

mass M + m, just like the falling blocks attached by a massless string in Section 1.1.2 above. Thus we expect the

final expression for μ to depend on the combinationM + m, rather thanM or m individually, since μ determines

whether the two blocks stick together and act as a composite system.

To see this explicitly, let’s analyze the motion of the top block first. The forces on the top block are its weight

−mg, the normal force N1 provided by the bottom block, and the frictional force Ff = μN1. Since the top block is

not accelerating vertically, we must have N1 = mg and the net force forward is Ff = μmg. Now the top block will

begin to slip just as the force F1 on it is equal to the maximum force that friction can supply; in other words, the

slipping condition is F1 = Ff = μmg. But by definition we also know that F1 = ma, where a here is the acceleration

of the two-block system – since both blocks are stuck together, they experience the same acceleration. The mass of

the total system is M + m and the applied force is F, so F = (M + m)a. Substituting the values for a and F1 into

F1 = ma, we find

μmg = m
F

M + m
=⇒ μ = F

(M + m)g
,

which as expected depends onM+m. Notice that we didn’t ever have to do a free-body analysis of the second block

alone: instead, we applied Newton’s second law to the two-block system in the second step.

Of course, we can also do a free-body analysis for the block of mass M. We have the applied force F acting

forwards, but there is also a force acting backwards, from Newton’s third law: the bottom block is providing a

frictional force which pushes the top block forwards, so the bottom block feels an equal force backwards. The net

horizontal force is then F − μmg, where the second term is the magnitude of the friction force derived above. The

acceleration of the bottom block is a = 1
M (F − μmg), and we want the frictional force on the top block to provide

at least this acceleration, a = Ff /m, or the blocks will slip. Thus

1

M
(F − μmg) = μmg

m
=⇒ μ = F

(M + m)g
,

the same answer as before. Plugging in the numbers, we find μ ≈ 0.14.

(C) T1 = T2 = T3

(D) T1 = T2 > T3

(E) T1 > T2 > T3

F

M

m

3. Two blocks of masses M and m are oriented as shown

in the diagram. The block M moves on a surface with

coefficient of kinetic friction μ1, and the coefficient of

static friction between the two blocks is μ2. What is the

minimum force F which must be applied toM such thatm

remains stationary relative toM?

(A)
μ1

μ2
mg

(B)
μ1

μ2

Mm

M + m
g

(C) (μ1M + μ2m) g

(D)

(

μ1 + 1

μ2

)

(m + M)g

(E)

(

μ1M + m

μ2

)

g
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1.2 Kinematics 5

1.2 Kinematics

Kinematics is the first physics that almost everyone learns,

so it should be burned into the reader’s mind already. For

almost all problems it is sufficient to know the equations

of motion for a particle undergoing constant acceleration.

The primary types of problem worth reviewing are projectile

motion problems and problems involving reference frames.

To solve projectile motion in two dimensions, you only need

the equations of motion for the x- and y-coordinates of the

particle,1

x(t) = v0xt + x0, y(t) = −1

2
gt2 + v0yt + y0, (1.1)

where we define coordinates such that gravity acts in the

negative y-direction and g = 10 m/s2. Restricting to one

dimension, there is another useful formula relating the initial

and final velocities of an object, vi and vf , its acceleration a,

and the change in position between the initial and final states

�x, if the acceleration is constant:

v2f − v2i = 2a�x. (1.2)

A two-line derivation of this formula uses the work–energy

theorem, reviewed in Section 1.3.4.

For problems involving reference frames, just solve the

problem in one frame, and then transform to the frame that

the problem is asking about. For example, consider the situa-

tion in Fig. 1.5: a ball is thrown out of a car moving at constant

velocity. Ignoring air resistance, in the frame of the car, the

ball moves directly perpendicular to the road. In the frame of

an observer at rest, the car is moving forwards, so the motion

Figure 1.5 A ball thrown out of a moving car, in the frame of a

stationary bystander.

1 In this book, we use the convention of numbering only equations
describing general results worth memorizing for the exam. We therefore
numbered the kinematics formulas here, while we didn’t number the
equations in the previous section that applied to a specific problem
involving blocks. This should help you focus on remembering the
equations that actually matter for the exam. We have listed all numbered
equations in the equation index at the back of the book, along with page
numbers, for your convenience.

of the ball is the sum of the two velocities. In other words, the

ball moves diagonally, both forward and away from the road.

See Example 1.3.

From the point of view of solving problems, however, one

should avoid kinematics like the plague. It often results in hav-

ing to solve quadratic equations, and although this is simple in

principle, it is usually a huge waste of time. As a rule of thumb,

only resort to kinematics if you need to know the explicit time

dependence of a system. In nearly all other cases, the basic

energy considerations discussed in Section 1.3 will be faster

and computationally simpler.

1.2.1 Circular Motion

One kinematic situation that arises often on GRE questions is

circular motion. We will consider this in slightly more detail

in Section 1.6 when we discuss orbits. For now, consider a

particle moving on a circular path. Its acceleration vector can

always be decomposed into radial and tangential components.

If its tangential acceleration is zero, then its tangential velocity

is constant; it is moving in uniform circular motion about the

center of the circle. But its radial acceleration is nonzero, and

has value

a = v2

r
, (1.3)

where v is the speed of the particle and r is the radius of its

orbit. From this, we can immediately also infer that the force

needed to keep the particle in its orbit, the centripetal force, is

F = mv2

r
. (1.4)

Indeed, since the tangential acceleration is zero, it must expe-

rience some force, directed radially inwards, that keeps it

moving in a circular path at a constant speed. Remember

that this does not tell you what kind of force is acting on the

body. It just tells you that if you see a body moving uniformly

in a circle of radius r with constant speed v, then you can

determine what centripetal force must be acting on it.

While uniform circular motion is perhaps the most com-

mon example, it is certainly not the most general. There are

many cases of nonuniform circular motion: for example, a

roller-coaster going around a circular loop-the-loop, or a ver-

tical pendulum attached to a rigid rod with sufficient initial

speed to complete a full revolution. In these cases the angle

between the gravitational force vector and the velocity vec-

tor varies as the object goes around the circle, giving a varying

tangential acceleration in addition to the centripetal force, and

the above formulas do not apply throughout the whole orbit.

However, the uniform circular motion equations do apply

www.cambridge.org/9781108409568
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6 Classical Mechanics

EXAMPLE 1.3

Suppose an astronaut is on a rocket that is moving vertically at constant speed u. When the rocket is at a height h,

the astronaut throws a ball horizontally out of the rocket with velocity w, as shown in Fig. 1.6. What is the speed of

the ball when it hits the ground?

u

w

h

Figure 1.6 A ball is thrown horizontally at velocity w out of a rocket moving vertically upwards at constant velocity u.

In the frame of the rocket, the ball’s initial y-velocity is zero, but in the ground frame its initial velocity is u,

the relative velocity between the two reference frames. From our kinematic formula (1.2) above, we have for the

y-component of the velocity

vy =
√

u2 + 2gh.

The x-component of the velocity is always the same, vx = w, since no forces act in the x-direction, so we have a total

speed

v =
√

v2x + v2y =
√

u2 + w2 + 2gh.

at two very special places: the top and bottom of the circle,

where gravity acts purely vertically, and thus radially, such

that the object is instantaneously in uniform circular motion.

At all other points in the orbit, other methods (such as energy

conservation) must be used to find the velocity.

The centripetal force equation is not so interesting on its

own, so a very common class of problems involves combining

it with some other type of physics. A typical template might

look roughly like this: A particle is moving in a circle. Identify

the physics that is causing the centripetal force. Set the expres-

sion for this force equal to the centripetal force. Then solve for

whatever quantity is requested. See Example 1.4.

1.2.2 Problems: Kinematics

1. A cannonball is fired with a velocity v. At what angle from

the ground must the cannonball be fired in order for it to

hit an enemy that is at the same elevation, but a distance d

away?

(A) arcsin(v/gd)

(B) arcsin(gd/(2v))

(C) arcsin(2gd/v)

(D) (1/2) arcsin(gd/v2)

(E) arcsin(gd/v2)

2. A satellite (massm) is in geosynchronous orbit around the

Earth (mass ME), such that its orbit has the same period

as the Earth’s rotation. If the Earth has angular rotational

velocity ω, what is the radius of a geosynchronous orbit?

(A)
GME

ω2

(B)
Gm

ω2

(C)

(

GME

ω2

)1/3

(D)

√

GME

ω2

(E) There is no possible geosynchronous orbit.
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1.3 Energy 7

EXAMPLE 1.4

An electron (charge e) moves perpendicularly to a uniform magnetic field of magnitude B. If the kinetic energy of

the particle doubles, by howmuch must the magnetic field change for the particle’s trajectory to remain unchanged?

We know that the magnetic force on the electron is perpendicular to its motion (see Section 2.2.6 for a review), so

it is a centripetal force, and the electron moves in a circle. More specifically, the forces are constant, so the electron

executes uniform circular motion. Setting the magnetic and centripetal forces equal gives us

evB = mv2

r
.

Rearranging just a little, we can find the magnetic field

B = mv

er
.

If the kinetic energy of the particle doubles, its velocity increases by
√
2, so B must increase to

√
2B in order to

maintain the same radius. This template occurs very frequently. Though circular motion can involve many different

types of physics, identifying the centripetal force and setting it equal to mv2/r will give you an additional equation

to help solve the problem at hand.

1.3 Energy

Conservation of energy can be stated as follows:

If an object is acted on only by conservative forces, the

sum of its kinetic and potential energies is constant along

the object’s path.

Conservative forces are those for which the work done by

the force is independent of the path taken between the starting

and ending points, but the most useful definition (although

it seems tautological) is a force to which you can associate

a (time-independent) potential energy. The most common

examples are gravity, spring forces, and electric forces. The

most common example of a force that is not conservative,

and probably the only such example you’ll see on the GRE,

is friction: an object traveling from point A to B and back to

A will slow down due to friction the whole way through, even

though the starting point is the same as the ending point.

A standard subset of GRE classical mechanics problems are

most easily solved by straightforward application of conserva-

tion of energy. It’s important to recognize these problems so

you immediately jump to the fastest solution method, rather

than fish around for the right kinematics formulas, so we’ll

state a general principle:

If you want to know how fast or how far something goes,

use conservation of energy.

If you want to know how much time something takes, use

kinematics.

It’s baffling that this simple dichotomy isn’t introduced in

first-year physics courses. It’s based on the idea that total

energy is a combination of kinetic energies, which depend on

velocities, and potential energies, which depend on positions.

Setting Einitial = Efinal lets you solve for one in terms of the

other, but nowhere in the equation does time appear explic-

itly. On the other hand, kinematics gives you explicit formulas

for position and velocity as a function of time t (see equation

(1.1)). Of course, some problems will require a combination

of both methods, for example using conservation of energy

to solve for a velocity which you then plug into a kinematics

formula, but, as a very general rule, if time doesn’t appear in

the problem then you can leave kinematics out of the picture.

However, we’ll address a common exception to this rule at the

end of Section 1.3.2.

1.3.1 Types of Energy

To begin with, you should know the following formulas cold:

Translational kinetic energy:
1

2
mv2 (1.5)

Rotational kinetic energy:
1

2
Iω2 (1.6)

Gravitational potential energy on Earth: mgh (1.7)

Spring potential energy:
1

2
kx2 (1.8)

Hopefully the standard notation is familiar to you: v is

linear velocity, ω is angular velocity, m is mass, I is the

www.cambridge.org/9781108409568
www.cambridge.org


Cambridge University Press
978-1-108-40956-8 — Conquering the Physics GRE
Yoni Kahn , Adam Anderson 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Classical Mechanics

moment of inertia, h and x are displacements, g is gravita-

tional acceleration at Earth’s surface (which should always

be approximated to 10 m/s2 on the GRE when numerical

computations are required), and k is the spring constant.

There are two important points to remember about potential

energy:

● It is only defined up to an additive constant: we are free to

choose the zero of potential energy wherever is most con-

venient, which is usually some physically relevant position

such as the bottom of a ramp or the uncompressed length

of a spring.

● It is measured from the center of mass of an extended object.

The usefulness of the center of mass concept (see Section

1.4.4) is that it allows us to treat extended objects like point

masses, with all their mass concentrated at the location of

the center of mass.

There are other types of potential energy, but all can be

summarized by a definition. For any conservative force F, the

change in potential energy �U between points a and b is

�U = −
∫ b

a
F · dl. (1.9)

The line integral looks scary but it really isn’t, since in all

cases of interest the integral will be along the direction of

the force vector. Probably the only time you might have to

use this formula is if you can’t remember the electrostatic or

gravitational potential right away, so we’ll do that example

here. The gravitational force between twomassesm1 andm2 is

Fgrav = Gm1m2

r2
r̂. (1.10)

You may have seen this equation in the form

Fgrav, 1 on 2 = −Gm1m2

r2
r̂,

stating that the force on mass m2 from m1 points along the

vector r̂ from m1 to m2, with the minus sign to indicate that

the force is attractive. As we’ll see, there are minus signs

everywhere, so even though it’s (deliberately) a bit ambigu-

ous, we find (1.10) a more useful mnemonic for the GRE

– just remember that gravity is attractive, and fill in the

signs depending on which force (1 on 2 or 2 on 1) you’re

computing. See Example 1.5.

Alternatively, if you’re given the potential, you can com-

pute the force by inverting equation (1.9):

F = −∇U. (1.11)

Again, watch the minus sign!

1.3.2 Kinetic/Potential Problems

The simplest energy problem involves a mass on a ramp of

some complicated shape, asking about its final velocity given

that it starts at a certain height, or what initial height it will

need to get over a loop-the-loop, or something like that.

Because gravity is a conservative force, the shape of the ramp

is irrelevant, as long as it’s frictionless. If there’s friction, then

the shape of the ramp does matter because the work done by

friction depends on the distance traveled – we’ll get to that in

a bit. First we’ll look at a standard example.

EXAMPLE 1.5

Let’s find the gravitational potential of a satellite of mass m in the gravitational field of the Earth, of mass M. The

most common choice is to set the zero of potential energy at r = ∞, so the potential of the satellite at a finite

distance r from the center of the Earth is

U(r) = −
∫ r

∞
−GmM

r′2
dr′ = − GmM

r′

∣

∣

∣

∣

r

∞
= −GmM

r
.

Note the signs: the force on the satellite is directed towards the Earth, or in the −r̂ direction, but dl = +r̂ dr′, so
the dot product is negative. The final sign makes sense because gravitational potential decreases (that is, becomes

more negative) as the satellite gets closer to the Earth; in other words, it is attracted towards the Earth. Probably the

most confusing part of this whole business is the signs, which the GRE loves to exploit. Rather than worrying about

putting the signs in the right place throughout the whole problem, it may be best to just compute the unsigned

quantity, then fill in the sign at the end with physical reasoning.
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1.3 Energy 9

EXAMPLE 1.6

A block slides down a frictionless quarter-circle ramp of radius R, as shown in Fig. 1.7. How fast is it traveling when

it reaches the bottom?

R

Figure 1.7 Block sliding down a quarter-circle ramp.

The quarter-circle shape is irrelevant except for the fact that it gives us the initial height: the block starts at height

R above the bottom. At the top, the block is stationary, so its velocity is zero and there is no kinetic energy; all the

energy is potential. Here the obvious choice is to set the zero of gravitational potential energy at the bottom of the

ramp, so that the potential at the top is mgR. Wait a minute – the problem didn’t tell us the mass of the block! Let’s

call it m, and see if we can resolve the situation as we finish the problem. At the bottom of the ramp, all the energy

is kinetic, because we’ve defined the potential energy to be zero there. If the block’s speed at the bottom is v, then its

kinetic energy is 1
2mv2. We now apply conservation of energy:

0 + mgR = 1

2
mv2 + 0

=⇒ v =
√

2gR.

Conveniently enough, the mass cancels out since both the kinetic and potential energies are directly proportional

tom.

There are a couple things to note about Example 1.6:

● This was the very simplest version of the problem. The

block could have had a nonzero speed at the top, in which

case it would have had nonzero kinetic energy there. So

don’t automatically assume that conservation of energy is

equivalent to “potential at top equals kinetic at bottom,”

which is not true in general!

● This problem can easily be extended to a kinematics prob-

lem by asking how far the block travels after it is launched

off the bottom of the ramp, assuming the ramp is some

height above the ground.2 The first step of this problem

would still be finding the initial velocity when it leaves the

ramp, exactly as we found above.

2 Note that this is an exception to our rule about distances being associated
with energy rather than kinematics: the block travels with constant
horizontal speed once it leaves the ramp, so the only thing dictating how
far it goes is the time it takes to fall vertically to the ground, which we
must get from kinematics. So this is an exception only because it’s actually
a two-dimensional problem.

● The fact that the mass cancels out is actually quite com-

mon in problems involving only a gravitational potential,

since both kinetic and potential energies are proportional

to m. So if the problem doesn’t give you a mass, don’t

panic! That’s actually a strong clue that the right approach

is conservation of energy.

1.3.3 Rolling Without Slipping

A common variant of the above problem is a round object

(sphere, cylinder, and so forth) rolling down a ramp. If the

object rolls without slipping, then its linear velocity v and

angular velocity ω are related by

v = Rω, (1.12)

where R is the radius. (Dimensional analysis dictates where

to put the R so that v comes out with the correct units.)

Then in addition to its kinetic energy, 1
2mv2, the object also

has rotational kinetic energy 1
2 Iω

2, where I is its moment

of inertia. The rolling-without-slipping condition (1.12) lets
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10 Classical Mechanics

you substitute v for ω and express everything in terms of v,

after which you can solve for v exactly as above. Incidentally,

it’s friction that causes rolling without slipping, as friction is

responsible for resisting the motion of the point of contact

with the object so that it can instantaneously rotate around

this pivot. In this situation friction does no work, but instead

is responsible for diverting translational energy into rotational

energy. Without friction, all objects would simply slide, rather

than roll.

Rolling-without-slipping problems almost always boil

down to the kinds of cancellations shown in Example 1.7:

the kinetic energy is of the form αmv2, with α some num-

ber that accounts for the moment of inertia. Here, α was 3/4

for the cylinder and 7/10 for the sphere. Notice that the prob-

lem didn’t ask which object arrives first, only which object had

the greater velocity at the bottom: the former is a kinematics

question, which by our general principle can’t be answered by

conservation of energy alone.

EXAMPLE 1.7

A cylinder of mass m and radius r, and a sphere of mass M and radius R, both roll without slipping down an

inclined plane from the same initial height h, as shown in Fig. 1.8. The cylinder arrives at the bottom with greater

linear velocity than the sphere

(A) ifm > M

(B) if r > R

(C) if r > 4
5R

(D) never

(E) always

M, m
R, r

Figure 1.8 Ball or cylinder rolling down an inclined ramp.

You should immediately recognize that the mass is a red herring: since the moment of inertia is proportional to

the mass, the same arguments as in Section 1.3.2 go through, and the mass cancels out of the conservation of energy

equation for both objects. But let’s see how this works explicitly. The moments of inertia are 1
2mr2 for the cylinder

and 2
5MR2 for the sphere (neither of which you should memorize, since they’re among the few useful quantities

given in the table of information at the start of the test). The energy conservation equations read

mgh = 1

2
mv2cyl +

1

2

(

1

2
mr2

)

ω2
cyl (cylinder),

Mgh = 1

2
Mv2sph + 1

2

(

2

5
MR2

)

ω2
sph (sphere).

As promised, we can cancelm from both sides of the first equation, andM from both sides of the second, which lets

us equate the two right-hand sides. Now, substituting ωcyl = vcyl/r and ωsph = vsph/R, we have
(

1

2
+ 1

4

)

v2cyl =
(

1

2
+ 1

5

)

v2sph.

The radii also cancel! So we can read off immediately that vcyl < vsph, and the cylinder always arrives slower,

choice D.
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