

CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Mathematical Sciences

From its pre-historic roots in simple counting to the algorithms powering modern desktop computers, from the genius of Archimedes to the genius of Einstein, advances in mathematical understanding and numerical techniques have been directly responsible for creating the modern world as we know it. This series will provide a library of the most influential publications and writers on mathematics in its broadest sense. As such, it will show not only the deep roots from which modern science and technology have grown, but also the astonishing breadth of application of mathematical techniques in the humanities and social sciences, and in everyday life.

Principles of Geometry

Henry Frederick Baker (1866–1956) was a renowned British mathematician specialising in algebraic geometry. He was elected a Fellow of the Royal Society in 1898 and appointed the Lowndean Professor of Astronomy and Geometry in the University of Cambridge in 1914. First published between 1922 and 1925, the six-volume *Principles of Geometry* was a synthesis of Baker's lecture series on geometry and was the first British work on geometry to use axiomatic methods without the use of co-ordinates. The first four volumes describe the projective geometry of space of between two and five dimensions, with the last two volumes reflecting Baker's later research interests in the birational theory of surfaces. The work as a whole provides a detailed insight into the geometry which was developing at the time of publication. This, the third volume, describes the principal configurations of space of three dimensions.

Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection will bring back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

Principles of Geometry

VOLUME 3: SOLID GEOMETRY

H.F. BAKER

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi, Dubai, Tokyo, Mexico City

Published in the United States of America by Cambridge University Press, New York

 $www. cambridge. org \\ Information on this title: www. cambridge. org/9781108017794$

© in this compilation Cambridge University Press 2010

This edition first published 1923 This digitally printed version 2010

ISBN 978-1-108-01779-4 Paperback

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

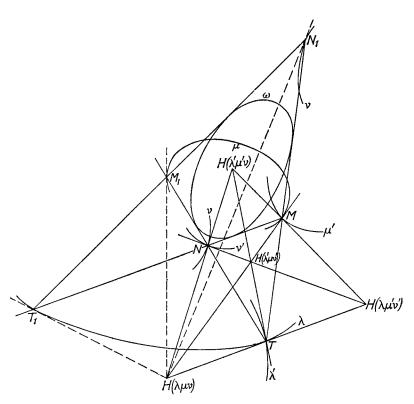
PRINCIPLES OF GEOMETRY

CAMBRIDGE UNIVERSITY PRESS

C. F. CLAY, Manager LONDON: FETTER LANE, E.C. 4

LONDON: H K. LEWIS AND CO, LTD., 136, Gower Street, W.C. 1
NEW YORK · THE MACMILLAN CO.
BOMBAY
CALCUTTA
MACMILLAN AND CO, LTD.
MADRAS
TORONTO: THE MACMILLAN CO OF
CANADA, LTD.
TOKYO: MARUZEN-KABUSHIKI-KAISHA

ALL RIGHTS RESERVED



PONCELET'S PORISM AND CONFOCAL QUADRICS (see p. 116)

PRINCIPLES OF GEOMETRY

BY

H. F. BAKER, Sc.D., LL.D., F.R.S.,

LOWNDEAN PROFESSOR OF ASTRONOMY AND GEOMETRY, AND FELLOW OF ST JOHN'S COLLEGE, IN THE UNIVERSITY OF CAMBRIDGE

VOLUME III

SOLID GEOMETRY

QUADRICS, CUBIC CURVES IN SPACE, CUBIC SURFACES

CAMBRIDGE AT THE UNIVERSITY PRESS

1923

PRINTED IN GREAT BRITAIN

PREFACE

THE present volume is devoted to geometry in three dimensions. The discussion of the logical standpoint, to which sufficient space has been given in the preceding volume, is left aside; and, from a desire to limit the size of the volume, many things are omitted which might well have been included. What is given may, however, be regarded as essential to any student who professes to have received a mathematical education. The aptitude for geometrical construction in space, important as it is in the applications of mathematics to physics and engineering, receives, in our educational system at present, less training than it deserves. It is the writer's hope that this volume may help to emphasize this; and may convey to readers something of the fascination and freedom which belongs to the reduction of intricate geometrical relations to the properties of a constructed figure. Only by such methods, moreover, can progress be made beyond the first principles of the subject.

Up to the end of Chapter III, this volume was in type when death severed an association to which the writer owed more help than he can well express. In business, James Bennet Peace was clear and honest; in friendship, constant and self-regardless; many beside the writer deplore his loss. To him, and to the co-operation of the other members of the Staff of the University Press, great acknowledgment is due.

H. F. BAKER.

14 July 1923.

> "Teodoro Reve,, che avevo cominciato ad ammirare fin da studente, leggendo la sua classica Geometrie der Lage; e col quale poi non avevo tardato ad entrare in relazione scientifica, ed anche personale, sì da poter apprezzare, oltre al valore del matematico, la grande bontà d'animo dell'uomo: vero gentiluomo!

> Nato a Cuxhaven il 20 giugno 1838,, era passato verso il 1864 ad insegnare nel Politecnico di Zurigo.Aveva esordito nella scienza con lavori di Fisica matematica e di Meteorologia. Ma, poichè a Zurigo il corso del Culmann, fondatore della Statica grafica, si basava sulle teorie della Geometria di posizione, e il classico trattato di Staudt era troppo difficile per gli studenti; Reye fu condotto ad insegnare quelle teorie e ad esporle in un nuovo trattato, che uscì in due parti nel 1866 e nel 1868.

Artista non meno che scienziato, Reye ha molto contribuito a quella grandiosa e pure snella costruzione scientifica che è la Geometria di posizione, introducendo o svolgendo idee semplici e geniali; studiando, com' è carattere di essa, svariate figure in tal maniera da illuminarne di vivida luce le proprietà più profonde, e i legami che le uniscono. Non solo ci ha fatto conoscere nuovi veri; ma ci ha procurato squisiti godimenti estetici, quali solo può dare il bello. Onore e gratitudine a Lui!"

Corrado Segre, Rendiconti...dei Lincei, 2 Aprile 1922.

TABLE OF CONTENTS

CHAPTER I. INTRODUCTION TO THE THEORY OF QUADRIC SURFACES

	IAGE
Preliminary remark. Equation of a quadric surface	1
Definition of a quadric surface by means of its lines	1—3
Definition of a quadric cone	4
The duality of the definition of a quadric	4
Application of the symbols; equation of a quadric	5—7
Quadric defined by two conics having two points in common, and	
a line meeting these conics	7—10
Three conics of which every two have two points in common lie on	
a quadric	10
Two conics which have two points in common lie on two quadric	
cones	10
Quadric defined by two dually related central systems	1113
Quadric representing a plane with two fundamental points	13, 14
General homogeneous quadric polynomial in four variables	15, 16
Equation of a quadric cone	17
Condition for quadric form to represent a cone	18
Conditions for quadric form to represent two planes	19
Conditions for quadric form to represent a repeated plane	20
General properties of a quadric given by its equation	20 - 26
Tangent cone, or enveloping cone, of a quadric	26
Polar plane, and tangent plane, descriptively defined	27
Polar line of a line in regard to a quadric	28
Polar point of a plane in regard to a quadric	29, 30
Polar point of a plane in regard to a quadric, expressed by the	
symbols	31
Examples of the general properties of quadrics (Exx. 1-19) .	31 - 56
Ex. 1. The self-dual character of a quadric, in particular form .	31
Ex. 2. The same in general	32
Ex. 3. Two conjugate sections have tangent lines at a common point	
harmonic in regard to the generators; the dual of this	32, 33
Ex. 4. Self-polar tetrad in regard to a quadric	33, 34
Ex. 5. Tetrad of points whose opposite joins are conjugate lines;	
self-conjugate pentad; construction from two tetrads in perspec-	
tive; analytical treatment; expression of a quadric by five squares	3440
Ex. 6. A general self-polar figure in space of any number of dimen-	
sions	40, 41
	a 5

x Contents

	PAGES
Ex. 7. Joins of two reciprocal tetrads are generators of a quadric Ex. 8. Symmetry of two particular quadrics arising in preceding	41, 42
example	42—44
Ex. 9. Dandelin's figure of generators; its application to Steiner	
points in Pascal's figure	44—47
Ex. 10. Construction of a self-conjugate hexad. Expression of a	
quadric by six squares	47—49
Ex. 11. Construction of an incomplete tetrad, or pentad, or hexad,	
of points of a quadric	49, 50
Ex. 12. Condition for one quadric to be outpolar to another.	5052
Ex. 13. A property of two self-polar tetrads	52
Ex. 14. Quadric for which two proper tetrads are reciprocal .	53
Ex. 15. A theorem of Chasles for the intersections of a quadric	
with the joins of four points	53, 54
Ex. 16. A further theorem for the intersections of a quadric with	
the joins of four points	54
Ex. 17. Bipunctual quadric, the harmonic conjugate of two planes	54
Ex. 18. The equation of a quadric touching the four planes of	
reference	55
Ex. 19. A birational transformation of a quadric into itself. Its	
geometrical meaning	55, 56
The coordinates and equations of a line in three dimensions. Ele-	
ments of the theory of a linear complex	56-69
Ex. 1. The analytical conditions for a plane to contain a line .	57
Ex. 2. Common element of a line and point, or of a line and plane	57, 58
Ex. 3. The condition of intersection of two lines	58
Ex. 4. Lines of a quadric as a linear system	58
Ex. 5. The tangent planes from a line to a quadric	58
Ex. 6. Coordinates of the polar line of a line in regard to a quadric	58, 59
Ex. 7. Condition a line should touch a quadric	59
Ex. 8. Change of line coordinates by change of reference points .	59, 60
Ex. 9. Generators of a quadric, of one system, belong to three linear	00, 00
	60
complexes	00
Analytical definition. Derivation from generators of a quadric.	
Sylvester's derivation. Polar lines. Linear complex consists of	
those lines of a focal system which intersect, and coincide with,	00 00
their polars. Invariant of two linear complexes	6066
Ex. 11. Pole of a plane in a focal system	66
Exx. 12—14. Geometrical theorems. A theorem of Sylvester's .	66
Ex. 15. Chasles' generation of a linear complex	66, 67
Exx. 16—22. The focal system and Moebius tetrads	67, 68
Ex. 23. The two lines common to a linear complex and a quadric.	68
Ex 24. Theorem for the mutual perpendiculars of lines	68

Contents	xi
	PAGES
Ex. 25. The tungent lines of a cubic curve belong to a linear com-	
plex	68
Ex. 26. A skew pentagon determines a focal system	68
Ex. 27. The polar line of a line in regard to a general quadric .	69
Ex. 28. The tangent lines of the curve of intersection of two	
quadrics; eight of these meet an arbitrary line	69
CHAPTER II. RELATIONS WITH A FIXED C	CONIC.
SPHERES, CONFOCAL SURFACES; QUADRI	
THROUGH THE INTERSECTION OF TWO	
	,
GENERAL QUADRICS	
Parallel lines and planes. Middle points. Lines and planes at right	
_ angles	70, 71
Exx. 1—3	71
Spheres and Circles	72, 73
Exx. 1—5. Plane sections of a sphere	73
Relations of two spheres. Coaxial spheres	7476
Ex. 1. Two circles with two common points lie on a sphere	77
Ex. 2. The radical planes of the pairs of three spheres meet in a line	77
Ex. 3. Any three circles are met in two points by another properly	
taken circle	77
Ex. 4. Analytic treatment of the relations of two spheres. Centres	
$of\ similitude\ .$	77, 78
Ex. 5. A sphere can be constructed of given centre to pass through	
a given point	78
Ex. 6. Sphere determined by perpendiculars from a fixed point to	
planes through another point	78
Ex. 7. Theorems for an orthogonal tetrad	78
Relations of a quadric in general with the absolute conic. The	
circular sections	79
Umbilici of a quadric. Generators through these	80
Relations of a quadric cone with the absolute conic. Cone of revo-	
lution; or right circular cone	81
Ex. Analytical conditions for a right circular cone	82
Quadric touching the absolute plane	82, 83
Ex. 1. Umbilici of a paraboloid	83
Ex. 2. Two circular sections of a quadric not in parallel planes lie	
on a sphere	83
Ex. 3. Condition a plane should give a circular section	83
Ex. 4. Centres of plane sections of a quadric	83, 84
Ex. 5. Locus of line of intersection of two perpendicular tangent	
planes of a quadric	84
Ex. 6. Locus of normals of a quadric at points of a generator .	84

xii Contents

	PAGES
Line of striction on a quadric	84
Exx. 1—6. Properties of the line of striction	85, 86
The director sphere of a quadric. Analogue of Gaskin's theorem .	86—89
Ex. 1. The intersection of the director sphere with the quadric .	89, 90
Ex. 2. Condition two generators should be at right angles	90
Ex. 3. Point on quadric and director sphere at which three con-	
focals coincide	90
Ex. 4. Generalisation of director sphere	90, 91
Ex. 5. Locus of intersection of three perpendicular tangent lines of	,
a quadric	91
Confocal quadrics, defined algebraically	91, 92
Points through which confocals are not distinct	92
Ex. 1. The umbilicar generators lie on a quartic surface	92, 93
Ex. 2. Polar reciprocal of a confocal in regard to original	99
Axis of a plane in regard to a system of confocals. Plane touching	
all the confocals	98
Alternative ways of initiating the system of confocal quadrics.	
Dual of quadrics through common curve of two quadrics. By	
common tangent planes of two quadrics	94
Ex. Confocal paraboloids	94, 95
The relations of the four focal conics. Locus of vertex of right	
circular cone circumscribing a quadric. Section of quadric by	
plane at right angles to a focal conic has a focus on this conic	98
Ex. 1. Equation of enveloping vone of quadric drawn from point	
of focal conic	96
Ex. 2. Generalisation of focal distance theorem for a conic. The	
geometrical meaning	96
Ex. 3. Planes through a point whose sections with the quadric have	
the point as focus	96
Ex. 4. A system of right circular cones with given vertex	96
The axes of a confocal system of quadrics	97
Ex. The condition for a line to be one of these axes	97, 98
The axes of the confocal system lying in a plane touch a conic;	,
those through a point lie on a quadric cone	98
Ex. The axes are the lines which are met by the principal planes in	
related ranges	99
The tetrahedral complex. The associated conics and cones	99
Various geometrical conditions for an axis	99, 100
Ex. 1. Condition two polar lines should be at right angles	100
Ex. 2. Axes of the confocals lying in a plane	100
Ex. 3. The parabola touched by the axes lying in a plane is inpolar	
to the section of a confocal by this plane	101
Ex. 4. An axis of the confocals meets one of the surfaces in points	
whereat the normals intersect	101

Contents	xiii
	PAGES
Ex. 5. Axis of the confocals as axis of a plane section of one of the	1101
confocals	101
Ex. 6. Tangent planes of a surface where polar line of an axis	
meets it	102
Ex. 7. Plane of which a line of the tetrahedral complex is the axis	102
Ex. 8. Normal of one confocal meeting another of the surfaces .	102
Ex. 9. The locus of the conics which are touched by the axes inter-	
secting a line is a rational quartic surface	102
The normals of a quadric, and of confocal quadrics, which pass	
through a point	102-104
The polar planes of a point in regard to the confocals determine	
a cubic developable	103
Ex. 1. The cubic curve defining the six normals from a point to a	
quadric	104
Ex. 2. General definition of a cubic curve in space illustrated in	
this case	104
Exx. 3, 4. The planes containing two triads of feet of normals	
from a point to a quadric	104, 105
Ex. 5. Six points determining the cubic curve	105
Ex. 6. A property of the six feet of normals	105
Ex. 7. The normals of a quadric at the points of a plane section	
determine a ruled quartic surface with a cubic curve as double	
$\it curve$	105
The normals of the confocals at right angles to a given line; and	
the polar lines of this line	106, 107
Ex. 1. Equation of locus of polar lines of a given line in regard to	•
the confocals	107
Ex. 2. Equations of the cubic curve which is the locus of points of	
contact of tangent planes to the confocals from a given line .	107
Special positions for the line	107, 108
Ex. Points of contact of parallel tangent planes of the confocals lie	
on a conic	108
The enveloping cones drawn from a point to the surfaces of the	
confocal system; and the tangent planes drawn from a line.	
Two of the confocals touch a line, with their tangent planes at	
right angles. The generators of three intersecting confocals	
are focal lines of enveloping cones	108, 109
Ex. 1. Equation of enveloping cone to a quadric, and of the quadric	,
itself, referred to normals at vertex. Normals lie in threes on	
four planes	110
Ex. 2. Chasles' theorem of correspondence between two systems of	
confocals	110, 111
Ex. 3. A property for a line, touching two confocals, leading to the	,
definition of geodesics	111, 112

xiv Contents

	PAGES
Ex. 4. The angle between two geodesic tangents of a line of curva-	
ture reduced to the angle between two tangents of a conic	112, 113
Ex. 5. Quadric of rigid generators transformable into a confocal.	113—116
Ex. 6. The generators, of one system, of confocal surfaces, at points	
of curve of intersection of two other fixed confocals, generate a	
conic on a principal plane. Proof of Poncelet's porism for conics	116—118
Ex. 7. Ivory's theorem, in generalised form	118
Ex. 8. The developable of common tangent planes of the confocals.	118, 119
Dual method of developing the theory of confocals	119, 120
Ex. 1. Equation of quadric locus of polar lines of a fixed line in	
regard to quadrics through the intersection of two	121
Ex. 2. Equation of cone touched by tangent planes of the family at	
points where surfaces are met by a line in a principal plane .	121
position where vary uses are more by a time in a primer party	
CHAPTER III. CUBIC CURVES IN SPACE. T	ΉE
INTERSECTION OF TWO OR MORE QUADR	ICS
The curve of intersection of two quadrics. Enumeration of possible	
cases	122, 123
Exx. 1—9. Equations of quadrics having the respective intersections	123—125
The cubic curve in three dimensions	125
Definition by two quadric cones. Tangent line and osculating	
plane of curve	126, 127
Definition by related axial pencils of planes	127
General quadric containing the curve	128
Cubic curve in space determined by six points	129
Cubic curves, lying on a quadric, passing through five points .	129
Intersections with generators, of cubic curve lying on a quadric .	129
Cubic developable dual to a cubic curve	130
The cubic curve as a self-dual construct	131
Surface formed by tangent lines of cubic curve	132
Four tangents of cubic curve meet any line	132
Concrete illustration of cuspidal edge of a developable	132
Cubic developable considered initially	133
Examples in regard to the cubic curve in space (Exx. 1-31)	134 - 149
Ex. 1. Tangent line and osculating plane of curve at a point belong	
to cone projecting curve from this point	134
Ex. 2. Points and osculating planes of curve define a focal system	134
Ex. 3. Tetrahedral complex of chords depending upon four points	
of the curve \ldots	134
Ex. 4, Equation of general quadric containing the curve. Coordi-	
nates of chord of the curve through an arbitrary point	134, 135
Ex. 5. A (1, 2) correspondence of generators of a quadric deter-	-
mining a cubic curve on the quadric	135

Contents	$\mathbf{x}\mathbf{v}$
	PAGES
Ex. 6. Quadrics through six points of the curve determine an invo-	
lution on any chord	135
Ex. 7. Various generations of a cubic developable	135
Ex. 8. Cone touched by planes joining a point of the curve to the	
chords which meet an arbitrary line	135, 136
Ex. 9. Planes meeting six lines and a common transversal of these	
in points lying on a conic belong to a cubic developable	136
Ex. 10. The form apolar to any system of binary forms of the	
same order	136
Ex. 11. The Hessian pair of three points of the curve	136, 137
Exx. 12, 13. Four mutually inscribed tetrads arising for the curve	137, 138
Exx. 14, 15. General case of four mutually inscribed tetrads .	138
Ex. 16. The general involution of sets of four points of the curve.	138, 139
Ex. 17. Number of common points of two cubic curves lying on a	
quadric	139
Ex. 18. A cubic curve to pass through five points and have a given	
chord	139
Ex. 19. A cubic curve to pass through four points and have two	
given chords when possible	139, 140
Ex. 20. A cubic curve to pass through three points and have three	
given chords	140
Ex. 21. A cubic curve to pass through two points and have four	
$given\ chords$	140
Ex. 22. A cubic curve to pass through one point and have five	
$given\ chords$	140, 141
Ex. 23. Two general cubic curves in space have ten common chords	141, 142
Ex. 24. There are six cubic curves having six given lines, of general	
position, as chords	142
Ex. 25. A cubic transformation giving another proof of preceding	
results. The condition that four lines should be tangents of a	
$cubic\ curve$	142 - 145
Ex. 26. A cubic curve to meet each of four lines in a pair of points	
of an involution given thereon	145
Ex. 27. The condition for a cubic curve to be outpolar to a quadric.	
Self-polar tetrads, self-conjugate pentads and hexads thereon .	
Ex. 28. Cubic developable inpolar to a quadric	147
Ex. 29. Cubic curve containing six points of two self-polar tetrads	
has join of other two for chord. Three independent quadrics con-	
tain the eight points. Associated points	147, 148
Ex. 30. Squares of eight points of a cubic curve linearly related .	148
Ex. 31. A theorem of Lie, for complex curves, in generalised form	148, 149
The rational curve of order n in space of n dimensions	149, 150
Examples thereon (Exx. 1-4). Number of conics meeting eight	
lines	150, 151

Contents

xvi Contents

	PAGES
The curve of intersection of two general quadric surfaces; its	
irrationality	151
Examples (Exx. 1—3). The common self-polar tetrad	151, 152
The determination of a quadric by given conditions	152, 153
Ex. 1. The condition for two quadrics to intersect in two conics .	153
Ex. 2. Three quadrics intersect in eight points	153
Ex. 3. A detailed analytical consideration	153, 154
Ex. 4. Number of remaining common points of three quadrics with	
$a\ common\ curve$	154
Ex. 5. Weddle surface as locus of vertex of quadric cone containing	
$six\ points$	154
Ex. 6. Hesse's sextic curve, locus of vertex of quadric cone con-	
taining seven points	154
Theorems for eight associated points	154 - 158
Exx. 1-3. Four lines, determined by the eight points, which lie on	
a quadric (in analogy with Pascal's theorem)	154, 155
Ex. 4. A second construction for eight associated points	155
Ex. 5. Two determinations of the eighth point when seven are given	155, 156
Ex. 6. Determination of the ninth intersection of two plane cubic	
curves when eight are given	156, 157
Ex. 7. Associated points interpreted in space of four dimensions .	
CHAPTER IV. THE GENERAL CUBIC SURF INTRODUCTORY THEOREMS	ACE;
The theorem of a double-six of lines	159161
Reciprocity of the figure. Schur's quadric	161163
Another determination of the double-six, by a porismatic relation	163, 164
The Steiner trihedral pairs	164—166
Examples of the figure of twenty-seven lines (Exx. 1-5)	166—170
Ex. 1. Numbers of sets of lines of which no two meet	166
Ex. 2. The sets of three coplanar lines	166
Ex. 3. The number of constants on which the figure depends, and	
the general cubic polynomial in four coordinates	166—168
Ex. 4. Another proof of the reciprocity of the figure	168
Ex. 5. A double-six determined by five arbitrary points	168—170
	170174
Cubic curves having as chords five lines with a common transversal Deduction of a double-six of lines	
	178
Ex. 1. Pairs of ranges, of four points, intersections of lines, which	
are in perspective from a point of intersection of two lines. Ex. 2. Deduction of a pair of Steiner trihedrals	174 174
Ex. 2. Deduction of a pair of science virtuearas	174 174

Contents	xvii
	PAGES
The definition of a cubic surface in general. The equation of the surface	174, 175
The cubic curves of the surface which belong to a particular double- six	175—177
Each curve is determined by two points. Two curves of the same system have one common point	175
The cubic curves determined by quadrics through three (suitable)	176
A curve of either system lies on a quadric containing a curve of the	
other system	176
Two cubic curves of complementary systems meet in five points .	176
The quadrics containing the cubic curves are outpolar to the Schur	
quadric associated with the double-six	177
The five common points of two complementary cubics form a self-	
conjugate pentad in regard to the Schur quadric	177
Ex. 1. Consideration of two cubic curves of the surface with one	
common point	177, 178
Ex. 2. A property of plane cubic curves: if conics be drawn through	1,1, 1,0
four given points of the curve, the line joining the two remaining	
intersections passes through a fixed point of the curve. General	
	150 150
theorem of coresiduation for a plane curve	178, 179
Ex. 3. Illustration of the theorem of coresiduation for curves on the cubic surface	179, 180
Ex. 4. Statement of the theorem in general	181
Ex. 5. The conics lying in planes through a line of the surface meet	101
the line in pairs of points of an involution	181
Ex. 6. All polar quadrics meet a line of the surface in pairs of	101
	100
points of an involution	182
Ex. 7. Definition of the cubic surface from two cubic curves with a	
common point. Number of lines meeting four curves of given orders	183, 184
Definition of a cubic surface by three related star-figures, or cen-	
tral-systems	184 - 186
Meaning of related star-figures	184
Resulting equation of the cubic surface	186
Ex. 1. The cubic curves, and the quadrics containing these, arising	
from this form of the equation	186
Ex. 2. All Schur quadrics are inpolar to the polar quadrics; there	
are six linearly independent Schur quadrics in tangential form;	
they may be expressed by six point-pairs of the Hessian	187
Ex. 3. The equation of the Hessian for a certain form of the equa-	10,
tion of the cubic surface	187, 188
The representation of the cubic surface on a plane. Representation	101, 100
of the systems of curves of the surface by means of seven	
systems.	189—199

xviii Contents

	PAGES
Ex. 1. A further way of obtaining the representation upon a	
plane	192, 193
Ex. 2. Representation of complementary systems of cubic curves .	193
Ex. 3. Representation of conics of the cubic surface	194
Ex. 4. Representation of all cubic curves of the cubic surface .	194
Ex. 5. Number of intersections, freedom and genus, for systems of	
curves of the cubic surface	194
Ex. 6. Converse derivation of the cubic surface from six arbitrary	
points of the plane	194, 195
Ex. 7. Given seven lines with a common transversal, there is a	
point from which the eight lines are projected by planes touching	
a quadric cone. Corresponding theorems given six lines, or five	
lines, with a common transversal	195, 196
Derivation of a plane quartic curve from a cubic surface	196 - 201
The inflexional lines at a point of the cubic surface. They are the	
generators of the polar quadric of the point	197
The sextic curve of contact of tangent planes from a point of the	
cubic surface. Projects into a plane quartic curve	198
The sixty-three systems of conics, each touching the plane quartic	
curve in four points; each system representable by a pair of	
double tangents of the curve	198
Statement of the facts for a degenerate contact cone containing	
the tangent plane at the point of projection. Steiner system	
of bitangents of a plane quartic curve	199, 200
Proof of the results for the case of planes drawn to two skew lines	
of the cubic surface. The contact cones are those containing	
the cubic curves, through the point of projection, associated	
with the two lines. Relation with the Schur quadric. The	
transversals from a point of the surface to the six pairs of a	
double-six of lines lie on a quadric cone	200, 201
Ex. 1. The quadric cone containing the points of contact of five	
tritangent planes of the cubic surface through a line. A property	
of cubic curves through these five points	201, 202
Ex. 2. The algebraic treatment of the case of two skew lines of the	
surface	202, 203
The equation of the cubic surface referred to two Steiner trihedrals.	
Deduction of the lines of the surface	203 - 206
The Cremona form of the equation of the cubic surface	206
The Sylvester form of the equation of a general cubic surface .	206 - 208
The polars in regard to a cubic surface. The Hessian surface .	208-210
Ex. 1. The vertices of a pair of Steiner trihedrals are corresponding	
points of the Hessian	210
Ex. 2. The joins of the eight points of which a given plane is the	
polar plane	210

Contents	xix
	PAGES
Ex. 3. The remaining intersections with the Hessian of the join of a pair of corresponding points.	211
Ex. 4. The cubic surface enveloped by the polar planes, in regard to the cubic surface, of the points of a plane, touches the Hessian	211
along a sextic curve	211
Ex. 5. A construction for the expression of a cubic surface by six cubes	211
Ex. 6. Every line of the cubic surface touches the Hessian in two points. The twenty-four intersections with the Hessian of the lines	
of a double six	211
Ex. 7. The equation of the Hessian when the cubic surface is expressed by six cubes. The question of the generality of Sylvester's	
form	211, 212
The representation of a general cubic surface upon a quadric surface. The twenty-seven elements on the quadric corresponding	
to the twenty-seven lines of the cubic surface	212-214
Note on the cubic surface with four double points	214-218
The representation upon a plane. The fundamental cubic curves.	215
The tangent cone from any point of the surface breaks up into two	
quadric cones	216
The inflexional curves of the surface. One touches every funda-	
mental cubic curve	216, 217
Ex. The envelope sextic curve associated with a point. Proof of a	
theorem leading to a generalisation of the theorem of the nine-	
point circle	218-221
The Steiner quartic surface. Representation upon a plane	221, 222
Ex. 1. Envelope of polar planes, in regard to a cubic surface, of	•
points of a plane in connexion with Steiner's surface	222
Ex. 2. The inflexional curves of Steiner's surface	222
Ex. 3. These curves are rational quartics. A property of these .	222, 223
Ex. 4. A formula for inflexional curves which includes the cases of	
the cubic surface with four double points and of Steiner's surface	223
Ex. 5. Veronese's surface	228
Ex. 6. The general cubic surface derived from two tetrads in per- spective. The cubic surface with four double points as a pedal	
locus. Kronecker and Custelnuovo's theorem	228
CORRECTIONS FOR VOLUMES I AND II	224
INDEX	225—228