EXPERIMENTAL PHYSICS
EXPERIMENTAL PHYSICS
A SELECTION OF EXPERIMENTS

BY
G. F. C. SEARLE, Sc.D., F.R.S.

UNIVERSITY LECTURER IN EXPERIMENTAL PHYSICS
AND
DEMONSTRATOR OF EXPERIMENTAL PHYSICS
AT THE CAVENDISH LABORATORY
SOMETIMES FELLOW OF PETERHOUSE

CAMBRIDGE
AT THE UNIVERSITY PRESS
1934
PREFACE

In the course of my work as a Demonstrator of Experimental Physics, which began in October 1888, many experiments have been devised for the instruction of my students at the Cavendish Laboratory. The three manuals on Experimental Elasticity (1908), on Experimental Harmonic Motion (1915) and on Experimental Optics (1925) describe courses of experiments in those subjects. Many experiments done in my Class had, by their nature, no place in these three volumes. Accounts of some have appeared in the Proceedings of the Cambridge Philosophical Society and elsewhere; others* have not, up to the present, been described by me, except in the manuscripts I have written for use in my Class.

The present volume contains accounts of experiments in Mechanics, Elasticity, Surface Tension, Viscosity, Heat and Sound. These experiments are not described in the three manuals already published. Prof. E. V. Appleton has called the new volume “The Odds and Ends Book”; I do not quarrel with his description.

My work as Demonstrator ceases on 30 September, 1935. It seemed right to prepare for that event by writing this book. I hope it may be of service to those who succeed me, and that it may be useful to students and teachers at the Cavendish Laboratory and elsewhere.

The book is, in one aspect, love’s thank-offering for the many happy years spent in the service of students. The work has often been hard, sometimes very hard, but hard work need not be misery.

Mathematical discussions of some problems in Surface Tension, Conduction of Heat and Sound occupy Chapters v, viii and x. The Chapter (x) on Sound may seem over-long for the small

* In his Practical Physics (1926) my colleague and former assistant demonstrator, Mr T. G. Bedford, gave, by my permission, brief accounts of a few of these experiments.
number of acoustical experiments described in Chapter xi, but I was anxious to bring out the character of the motion which the air has when a resonator is sounding.

The increase in the number of students led, some years ago, to the organisation of a new Practical Class in Electricity and Magnetism. The removal of these subjects from my Practical Course allowed them to be taught more fully than was previously possible, and compelled me to extend my course in Optics. The only, but very real, disadvantage is that students are now offered more than they can absorb in the time at their disposal.

I have abandoned a former project of writing a manual on *Experimental Electricity and Magnetism*.

To avoid the monotony of repetition, I record here my cordial thanks to each of the many friends who gave me help at any stage of the work.

Prof. Lord Rutherford, F.R.S., has seconded my endeavour to secure efficiency in my Class; he has been indulgent to me.

I have often sought the advice of Dr G. T. Bennett, F.R.S. By his help, many statements, particularly in the dynamical sections of the book, were put into precise forms.

The theory of the Sessile Drop in Chapter v was suggested by the interesting, but mathematically invalid, work of Mathieu. By using an elliptic integral method, to the same degree of approximation as I had adopted, Prof. R. H. Fowler, F.R.S., verified equation (25) of § 102 and equation (30) of § 104.

Several students gave their help during vacations. Messrs T. B. Rymer, C. L. Cook, J. G. P. Baker, R. Stone, K. G. Tupling, W. A. B. Carter, J. W. Jeffery and J. L. Roberts assisted in the preparation of the manuscript; Mr C. H. Garrett and Mr D. A. Crooks gave effective help in the correction of the proof sheets. My chief debt is to Miss F. W. Stubbins, of Girton College, who gave her help in the summers of 1929 and 1930. Besides transcribing for the press much of my rough manuscript, she made a large number of the drawings for the figures.

For some years I have had the help of Mr J. A. Ratcliffe, Fellow of Sidney Sussex College, and of Dr N. Feather, Fellow of Trinity College, as demonstrators. Their experience gave weight to their comments on the proofs of the first six chapters. It is
usually taught that the stable length of a cylindrical soap film, of radius a, is $2\pi a$, and this is true under suitable conditions. Dr Feather’s criticism led me to the result that, if the pressure excess be maintained at the constant value $2T/a$, where T is the surface tension, the maximum stable length is only πa.

Dr Guy Barr, of the Department of Metallurgy and Metallurgical Chemistry, National Physical Laboratory, read the proofs of the Chapter (vii) on Viscosity. His expert knowledge of Viscometry made his help of great value.

Dr Barr, and Dr Allan Ferguson, East London College, made some useful remarks on the Chapters (v and vi) on Surface Tension.

Dr J. K. Roberts, sometime Assistant in the Heat Department of the National Physical Laboratory, made a careful revision of the Chapters on Heat. The Chapters on Sound were read by Dr J. E. R. Constable, of the Physics Department of the National Physical Laboratory, and also by Mr W. R. Dean, Fellow of Trinity College. Mr Dean’s detection of a mathematical error led me to set out in full the exact equation for spherical waves of sound.

The Cambridge Philosophical Society and Messrs W. G. Pye & Co. have lent blocks for several figures.

The work of the Staff of the Cambridge University Press has won my admiration and my gratitude.

I owe very much to my assistant, Mr C. G. Tilley, for his faithful help for over fifteen years, and for his unfailing kindness and thought for me. If the apparatus described in this book be efficient for its purpose, it is, in many cases, due to Mr Tilley’s resourcefulness, to his knowledge of workshop methods, and to his skilled craftsmanship. In former years, I received much help from Mr F. Lincoln and Mr H. D. Roff, instrument makers at the Laboratory.

I have authorised Messrs W. G. Pye & Co., of Cambridge, to supply apparatus made to my designs.

I dare not conclude without a word of grateful testimony. For about seven years, I went through a dark time of nervous and physical weakness, with a complete breakdown in 1910. At the end of 1914, there came into my hands Miss Dorothy Kerin’s
viii

PREFACE

little book, *The Living Touch*, a record of her miraculous healing. It opened my eyes, as they had never been opened before, to the present-day Power of the Living God, the Creator of the universe. As an immediate result, all the old weakness left me, and I was well. In recent years, at Miss Kerin's hostel, Chapel House, Mattock Lane, Ealing, London, many have realised the greatness of the Lord's Power and Love, and have learned to trust Him.

G. F. C. SEARLE

Cavendish Laboratory

Cambridge

17 September 1934
CONTENTS

CHAPTER I

EXPERIMENTS IN DYNAMICS

Experiment 1. An example of conservation of angular momentum.
§ 1. Angular momentum of a particle about an axis. 2. Angular moment of a system about an axis. 3. Method. 4. Experimental details. 5. Practical example [Pages 1 to 7]

Experiment 2. Kater’s pendulum.

Experiment 3. Moment of inertia of a body about a non-principal axis.

Experiment 4. Recording gyroscope.

CHAPTER II

THE STROBOSCOPE

Experiment 5. Determination of frequency of alternating current.

CHAPTER III

EXPERIMENTS IN ELASTICITY

§ 32. Transverse vibrations of a thin rod. 33. Mathematical theory of vibrations of rod. 34. Roots of \(\cosh m \cos m = -1 \). [Pages 52 to 58]

Experiment 6. Determination of Young’s modulus by vibrations of a rod.
§ 35. Introduction. 36. Calibration by tuning forks. 37. Determination of Young’s modulus. 38. Ratio of \(m_1 \) to \(m_0 \). 39. Practical example. [Pages 58 to 63]
CONTENTS

Experiment 7. Determination of frequency of alternating current by vibrations of a rod.
§ 40. Introduction. 41. Method. 42. Determination of frequency of current. 43. Practical example. 44. Experiment with several nodes. 45. Practical example [Pages 63 to 69]

Experiment 8. A bifilar method of measuring the rigidity of wires.
§ 46. Introduction. 47. Bifilar couple. 48. Apparatus. 49. Theory of method. 50. Experimental details. 51. Conversion table. 52. Practical example [Pages 69 to 79]

CHAPTER IV
OPTICAL METHODS OF DETERMINING ELASTIC CONSTANTS
§ 53. Introduction. 54. Thermal effects due to strain. 55. Mechanical work spent in stretching. 56. Application to bending of bar. 57. Mechanical work spent in shearing. 58. Geometry of helicoid. 59. Application to torsion of blade [Pages 80 to 88]

Experiment 9. Determination of elastic constants of glass by Cornu’s method.

Experiment 10. Determination of elastic constants of glass by focal line method.
§ 68. Introduction. 69. Focal lines due to reflexion at curved surface. 70. Optical method of measuring curvatures of reflecting surface. 71. Determination of Young’s modulus and Poisson’s ratio. 72. Determination of rigidity. 73. Practical example [Pages 101 to 113]

§ 74. Introduction. 75. Method. 76. Optical adjustments. 77. Experimental details. 78. Mechanical theory. 79. Theory and practice of optical measurements. 80. Practical example [Pages 113 to 127]

CHAPTER V
MATHEMATICAL DISCUSSIONS OF PROBLEMS IN SURFACE TENSION
CONTENTS

xi
curvature of surface and normal force per unit area due to surface tension. 89. Principal curvatures of surface of revolution. 90. Form of meniscus in capillary tube. [Pages 128 to 142]

THEORY OF CATENOID FILM
§ 91. Catenoid film. 92. Maximum length of catenoid. 93. Surface of catenoid. 94. Solution of equation \(\cosh n = n \). [Pages 143 to 148]

THEORY OF CYLINDRICAL FILM

THEORY OF SESSELIKE DROP
§ 97. Sessile drops. 98. Introduction to theory. 99. Large finite drop. 100. Curvature at vertex. 101. Circle of contact. 102. Form of drop where \(x \) is comparable with \(c \). 103. Determination of surface tension. 104. Determination of angle of contact. . . . [Pages 153 to 163]

CHAPTER VI

EXPERIMENTS ON SURFACE TENSION
§ 105. Soap solution. 105a. Cleaning of glass surfaces. [Pages 164 to 165]

Experiment 12. Measurement of surface tension of liquid by capillary tube.

§ 110. Method. 111. Practical example . . . [Pages 171 to 174]

§ 112. Introduction. 113. Method. 114. Practical example [Pages 174 to 177]

Experiment 15. Measurement of surface tension of soap solution by thread method.

§ 115. Method. 116. Practical example . . . [Pages 177 to 180]

§ 117. Method. 118. The bubble holder. 119. Note on design of apparatus. 120. Practical example . . . [Pages 180 to 185]

Experiment 17. Measurement of surface tension of soap film by buoyancy method.

§ 121. Method. 122. Practical details. 123. Practical example [Pages 185 to 188]
CONTENTS

Experiment 18. Study of catenoid film.
§ 124. Introduction. 125. Apparatus. 126. Method. 127. Practical example [Pages 188 to 190]

Experiment 19. Study of cylindrical film.

Experiment 20. Measurement of surface tension of mercury by Quincke’s sessile drop method.
§ 131. Introduction. 132. Method. 133. Optical discussion. 134. Practical example [Pages 196 to 202]

Experiment 21. Surface tension of interface between two liquids.

CHAPTER VII

EXPERIMENTS ON VISCOSITY

§ 144. Introduction. 145. Stresses in a viscous fluid due to shearing. 146. Heat produced by shearing. 147. Turbulent motion. 148. Distribution of velocity in a tube deduced from minimum heat production. 148a. Flow through tube of elliptic section. 149. Angular velocity of liquid between a fixed and a rotating cylinder found by minimum heat method [Pages 216 to 225]

Experiment 22. Determination of viscosity of a liquid.

Experiment 23. Determination of viscosity of air.

Experiment 24. Determination of viscosity of very viscous liquid by viscometer.
CONTENTS

CHAPTER VIII
MATHEMATICAL DISCUSSIONS OF PROBLEMS IN CONDUCTION OF HEAT
[Pages 255 to 264]

CHAPTER IX
EXPERIMENTS IN HEAT
[Pages 265 to 269]

Experiment 25. Correction for the emergent column of a thermometer.
§ 180. Introduction. 181. Method. 182. Practical example
[Pages 269 to 273]

Experiment 26. Determination of thermal conductivity of copper.
[Pages 273 to 280]

Experiment 27. Determination of thermal conductivity of rubber.
§ 187. Introduction. 188. Theory of method. 189. Practical example
[Pages 280 to 284]

Experiment 28. Distribution of temperature along a bar heated at one end.
[Pages 284 to 294]

Experiment 29. Determination of mechanical equivalent of heat.
[Pages 294 to 305]

CHAPTER X
MATHEMATICAL DISCUSSIONS OF PROBLEMS IN SOUND
§ 203. Introduction. 204. Calculation of velocity of plane waves of sound
[Pages 306 to 310]

Spherical Waves and Radiation of Energy
[Pages 310 to 319]
CONTENTS

THEORY OF RESONATORS

213. Correction of volume due to potential energy of air in neck of res-
sonator. 214. Resonator with multiple and equal openings. 215. General
opening. 220. Opening of any form. 221. Resonator with thin-plate open-
ing. 222. Correction for thickness of plate. 223. Decay by radiation of
225. Radiation from resonator with tubular neck. 226. Effect of vis-
cosity. 227. Distribution of velocity in circular opening in thin plate.
228. Dissipation of energy in resonator with tubular neck. 229. Com-
parison of Helmholtz with tube-neck resonator. 230. Selectivity of a
resonator [Pages 319 to 344]

CHAPTER XI

EXPERIMENTS IN SOUND

Experiment 30. Effect of temperature upon velocity of sound.
§ 231. Method. 232. Practical example . . [Pages 345 to 349]

Experiment 31. Resonance with a bottle.
§ 233. Introduction. 234. Method. 235. Practical example
[Pages 349 to 351]

Experiment 32. Resonator with multiple openings.
§ 236. Method. 237. Practical example . . [Pages 351 to 352]

Experiment 33. Resonator with variable cylindrical neck.
§ 238. Introduction. 239. Estimation of F and H. 240. Correction for
open ends. 241. Experimental details. 242. Practical example
[Pages 352 to 356]

Experiment 34. Resonator with thin-plate opening.
§ 243. Method. 244. Correction for edge effect. 245. Practical example
[Pages 356 to 359]

Note I. Awbery’s method for combination of observations
[Pages 360 to 362]

Note II.Exact equation for spherical waves . . [Pages 362 to 363]