Cambridge University Press 978-1-107-69769-0 – Cambridge International AS and A Level Physics David Sang Graham Jones Gurinder Chadha and Richard Woodside Frontmatter <u>More information</u>

David Sang, Graham Jones, Gurinder Chadha and Richard Woodside

Cambridge International AS and A Level

Physics

Coursebook

Second Edition

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org

© Cambridge University Press 2010, 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010 Second edition 2014

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-69769-0 Paperback with CD-ROM for Windows® and MAC®

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

NOTICE TO TEACHERS IN THE UK

It is illegal to reproduce any part of this book in material form (including

photocopying and electronic storage) except under the following circumstances:(i) where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;

 (ii) where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of Cambridge University Press;

(iii) where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for example, the reproduction of short passages within certain types of educational anthology and reproduction for the purposes of setting examination questions.

Example answers and all other end-of-chapter questions were written by the authors.

Contents

Introduction	vii
How to use this book	viii
Chapter 1: Kinematics - describing motion	1
Speed Distance and displacement, scalar and vector Speed and velocity Displacement–time graphs Combining displacements Combining velocities	2 4 5 6 8 10
Chapter 2: Accelerated motion	14
The meaning of acceleration Calculating acceleration Units of acceleration Deducing acceleration Deducing displacement Measuring velocity and acceleration Determining velocity and acceleration in the laboratory The equations of motion Deriving the equations of motion Uniform and non-uniform acceleration Acceleration caused by gravity Determining <i>g</i> Motion in two dimensions – projectiles Understanding projectiles	15 15 16 17 17 18 20 22 24 25 25 28 29
Chapter 3: Dynamics – explaining motion	37
Calculating the acceleration Understanding SI units The pull of gravity Mass and inertia Top speed Moving through fluids Identifying forces Newton's third law of motion	38 39 41 43 44 45 47 49
Chapter 4: Forces – vectors and moments	53
Combining forces Components of vectors Centre of gravity The turning effect of a force The torque of a couple	54 56 59 59 63

Chapter 5: Work, energy and power	69
Doing work, transferring energy	71
Gravitational potential energy	75
Kinetic energy	76
g.p.e.–k.e. transformations	76
Down, up, down – energy changes	77
Energy transfers	78
Power	80
Chapter 6: Momentum	85
The idea of momentum	86
Modelling collisions	86
Understanding collisions	89
Explosions and crash-landings	91
Collisions in two dimensions	93
Momentum and Newton's laws	95
Understanding motion	96
Chapter 7: Matter and materials	101
Density	102
Pressure	102
Compressive and tensile forces	104
Stretching materials	105
Elastic potential energy	108
Chapter 8: Electric fields	116
Attraction and repulsion	117
The concept of an electric field	118
Electric field strength	119
Force on a charge	122
Chapter 9: Electric current, potential	
difference and resistance	127
Circuit symbols and diagrams	128
Electric current	129
An equation for current	132
The meaning of voltage	134
Electrical resistance	135
Electrical power	136
Chapter 10: Kirchhoff's laws	143
Kirchhoff's first law	144
Kirchhoff's second law	145
Applying Kirchhoff's laws	146
Resistor combinations	148

Cambridge International AS and A Level Physics

Chapter 11: Resistance and resistivity	156
The I–V characteristic for a metallic conductor	157
Ohm's law	158
Resistance and temperature	159
Resistivity	162
Chapter 12: Practical circuits	168
Internal resistance	169
Potential dividers	172
Potentiometer circuits	172
Chapter 13: Waves	178
Describing waves	179
Longitudinal and transverse waves	181
Wave energy	182
Wave speed The Depaler effect	183
Flectromagnetic waves	184 185
Electromagnetic radiation	186
Orders of magnitude	187
The nature of electromagnetic waves	188
Chapter 14: Superposition of waves	192
The principle of superposition of waves	193
Diffraction of waves	194
Interference	196
The Young double-slit experiment	200
Diffraction gratings	203
Chapter 15: Stationary waves	210
From moving to stationary	211
Nodes and antinodes	212
Formation of stationary waves	212
Determining the wavelength and speed of sound	216
Chapter 16: Radioactivity	222
Looking inside the atom	223
Alpha-particle scattering and the nucleus	223
A simple model of the atom	225
Nucleons and electrons	226
Forces in the nucleus	229
Fundamental particles?	229
	230 231
Radiation from radioactive substances	231 231
Discovering neutrinos	232
Fundamental families	232
Fundamental forces	232
Properties of ionising radiation	233

P1: Practical skills at AS level	239
Practical work in physics	240
Using apparatus and following instructions	240
Gathering evidence	241
Precision, accuracy, errors and uncertainties	241
Percentage upcortainty	243
Recording results	245
Analysing results	246
Testing a relationship	248
Identifying limitations in procedures and	
suggesting improvements	250
Chapter 17: Circular motion	258
Describing circular motion	259
Angles in radians	260
Steady speed, changing velocity	261
Angular velocity	261
Celculating acceleration and force	262
The origins of centripetal forces	265
Chapter 18: Gravitational fields	271
Representing a gravitational field	272
Gravitational field strength g	274
Energy in a gravitational field	276
Gravitational potential	276
Orbiting under gravity	277
I he orbital period	278
Orbiting the Earth	219
Chapter 19: Oscillations	285
Free and forced oscillations	286
Observing oscillations	287
Describing oscillations Simple barmonic motion	288
Representing s h m. graphically	209
Frequency and angular frequency	291
Equations of s.h.m.	293
Energy changes in s.h.m.	296
Damped oscillations	297
Resonance	299
Chapter 20: Communications systems	309
Radio waves	310
Analogue and digital signals	314
Channels of communication	317
Comparison of different channels	319

Chapter	21: Thermal physics	327	
Char	nges of state	328	
Ener	gy changes	329	
Inter	nal energy	331	
The	meaning of temperature	332	
Ther	mometers	334	
Calc	ulating energy changes	336	
Chapter	22: Ideal gases	345	
Part	icles of a gas	346	
Expl	aining pressure	348	
Mea	suring gases	348	
Boyl	e's law	349	
Chai	nging temperature	350	
Idea	l gas equation	351	
Mod	elling gases – the kinetic model	352	
Tem	perature and molecular kinetic energy	354	
Chapter	23: Coulomb's law	359	
Floo	tric fields	360	
Coul	iomh's law	360	
Flec	tric field strength for a radial field	362	
Flec	tric notential	363	
Com	paring gravitational and electric fields	366	
Chantor	24. Canacitanca	373	
Cnapter	24: Capacitance	312	
Capa	acitors in use	373	
Ener	gy stored in a capacitor	375	
Capa	acitors in parallel	377	
Capa	acitors in series	370	
Con	paring capacitors and resistors	379	
Сара		380	
Chapter	25: Electronics	386	
Com	ponents of an electronic sensing system	387	
The	operational amplifier (op-amp)	393	
The	inverting amplifier	397	
The	non-inverting amplifier	398	
Outp	out devices	398	
Chapter	26: Magnetic fields and		
	electromagnetism	406	
Proc	lucing and representing magnetic fields	407	
Mag	netic force	409	
Mag	netic flux density	411	
Mea	suring magnetic flux density	411	
Curr	ents crossing fields	413	
Forc	es between currents	415	
Rela	ting SI units	416	
Com	paring forces in magnetic, electric		
ar	id gravitational fields	417	

Chapter 27: Charged particles	422
Observing the force	423
Orbiting charges	423
Electric and magnetic fields	427
I he Hall effect	428
Discovering the electron	429
Chapter 28: Electromagnetic induction	435
Observing induction	436
Explaining electromagnetic induction	437
Faraday's law of electromagnetic induction	441
Lenzslaw	443
and transformers	445
	454
Chapter 29: Alternating currents	451
Sinusoidal current	452
Alternating voltages	453
Power and a.c. Why use a cliffor electricity supply?	455
Transformers	458
Rectification	460
Chanter 20. Quantum physics	
Chapter 30: Quantum physics	466
Modelling with particles and waves	466 467
Modelling with particles and waves Particulate nature of light	466 467 468
Modelling with particles and waves Particulate nature of light The photoelectric effect	466 467 468 471
Modelling with particles and waves Particulate nature of light The photoelectric effect Line spectra	466 467 468 471 475
Modelling with particles and waves Particulate nature of light The photoelectric effect Line spectra Explaining the origin of line spectra	466 467 468 471 475 476
Modelling with particles and waves Particulate nature of light The photoelectric effect Line spectra Explaining the origin of line spectra Photon energies	466 467 468 471 475 476 477
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe asture of light	466 467 468 471 475 476 477 478
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron waves	466 467 468 471 475 476 477 478 480 480
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron waves	466 467 468 471 475 476 477 478 480 480 480
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equations	466 467 468 471 475 476 477 478 480 480 489
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energy	466 467 468 471 475 476 477 478 480 480 489 490 491
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energyEnergy released in radioactive decay	466 467 468 471 475 476 477 478 480 480 489 490 491 494
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energyEnergy released in radioactive decayBinding energy and stability	466 467 468 471 475 476 477 478 480 480 480 480 480 480 489 491 494 494
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energyEnergy released in radioactive decayBinding energy and stabilityRandomness and decay	466 467 468 471 475 476 477 478 480 480 480 489 490 491 494 494 494
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energyEnergy released in radioactive decayBinding energy and stabilityRandomness and decayThe mathematics of radioactive decay	466 467 468 471 475 476 477 478 480 480 480 489 489 490 491 494 494 494 494
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energyEnergy released in radioactive decayBinding energy and stabilityRandomness and decayThe mathematics of radioactive decayDecay graphs and equations	466 467 468 471 475 476 477 478 480 480 480 480 480 480 480 490 491 494 494 494 494 496 497 499
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energyEnergy released in radioactive decayBinding energy and stabilityRandomness and decayThe mathematics of radioactive decayDecay graphs and equationsDecay constant and half-life	466 467 468 471 475 476 477 478 480 480 489 490 491 494 494 494 494 495 497 499 501
Chapter 30: Quantum physicsModelling with particles and wavesParticulate nature of lightThe photoelectric effectLine spectraExplaining the origin of line spectraPhoton energiesElectron energies in solidsThe nature of light – waves or particles?Electron wavesChapter 31: Nuclear physicsBalanced equationsMass and energyEnergy released in radioactive decayBinding energy and stabilityRandomness and decayThe mathematics of radioactive decayDecay graphs and equationsDecay constant and half-life	466 467 468 471 475 476 477 478 480 480 480 480 480 490 491 494 494 494 494 495 497 499 501

Cambridge International AS and A Level Physics

Chapter 32: Medical imaging	506
The nature and production of X-rays X-ray attenuation	507 509
Computerised axial tomography Using ultrasound in medicine	513 516
Echo sounding Ultrasound scanning Magnetic resonance imaging	518 520 522
P2: Planning, analysis and evaluation	529
Planning Analysis of the data Treatment of uncertainties Conclusions and evaluation of results	530 532 536 538
Appendix 1: Physical quantities and units	542
Prefixes Estimation	542 542
Appendix 2: Data, formulae and relationships	543
Data Conversion factors Mathematical equations Formulae and relationships	543 543 544 544
Appendix 3: The Periodic Table	545
Glossary	546
Index	555
Acknowledgements	564
Terms and conditions of use for the CD-ROM	566

Introduction

This book covers the entire syllabus of Cambridge International Examinations AS and A Level Physics. It is designed to work with the syllabus that will be examined from 2016. It is in three parts:

- Chapters 1–16 and P1: the AS level content, covered in the first year of the course, including a chapter (P1) dedicated to the development of your practical skills
- Chapters 17–32 and P2: the remaining A level content, including a chapter (P2) dedicated to developing your ability to plan, analyse and evaluate practical investigations
- Appendices of useful formulae, a Glossary and an Index.

The main tasks of a textbook like this are to explain the various concepts of physics that you need to understand and to provide you with questions that will help you to test your understanding and prepare for your examinations. You will find a visual guide to the structure of each chapter and the features of this book on the next two pages.

When tackling questions, it is a good idea to make a first attempt without referring to the explanations in this Coursebook or to your notes. This will help to reveal any gaps in your understanding. By working out which concepts you find most challenging, and by spending more time to understand these concepts at an early stage, you will progress faster as the course continues.

The CD-ROM that accompanies this Coursebook includes answers with workings for all the questions in the book, as well as suggestions for revising and preparing for any examinations you take. There are also lists of recommended further reading, which in many cases will take you beyond the requirements of the syllabus, but which will help you deepen your knowledge and explain more of the background to the physics concepts covered in this Coursebook. In your studies, you will find that certain key concepts come up again and again, and that these concepts form 'themes' that link the different areas of physics together. It will help you to progress and gain confidence in tackling problems if you take note of these themes. For this Coursebook, these key concepts include:

- Models of physical systems
- Testing predictions against evidence
- Mathematics as a language and problem-solving tool
- Matter, energy and waves
- Forces and fields

In this Coursebook, the mathematics has been kept to the minimum required by the Cambridge International Examinations AS and A Level Physics syllabus. If you are also studying mathematics, you may find that more advanced techniques such as calculus will help you with many aspects of physics.

Studying physics can be a stimulating and worthwhile experience. It is an international subject; no single country has a monopoly on the development of the ideas. It can be a rewarding exercise to discover how men and women from many countries have contributed to our knowledge and well-being, through their research into and application of the concepts of physics. We hope not only that this book will help you to succeed in your future studies and career, but also that it will stimulate your curiosity and fire your imagination. Today's students become the next generation of physicists and engineers, and we hope that you will learn from the past to take physics to ever-greater heights.

How to use this book

Each chapter begins with a short list of the facts and concepts that are explained in it.

Chapter 1: Kinematics – describing motion

Learning outcomes

You should be able to:

- define displacement, speed and velocity
- draw and interpret displacement-time graphs
- describe laboratory methods for determining speed
- use vector addition to add two or more vectors

There is a short context at the beginning of each chapter, containing an example of how the material covered in the chapter relates to the 'real world'.

Describing movement

Our eyes are good at detecting movement. We notice even quite small movements out of the corners of our eyes. It's important for us to be able to judge movement - think about crossing the road, cycling or driving, or catching a ball. Figure 1.1 shows a way in which movement can

be recorded on a photograph. This is a stroboscopic photograph of a boy juggling three balls. As he juggles a bright lamp flashes several times a second so that the camera records the positions of the balls at equal intervals of time.

If we knew the time between flashes, we could measure the photograph and calculate the speed of a ball as it moves through the air.

Figure 1.1 This boy is juggling three balls. A stroboscopic lamp flashes at regular intervals; the camera is moved to one side at a steady rate to show separate images of the boy.

The text and illustrations describe and explain all of the facts and concepts that you need to know. The chapters, and often the content within them as well, are arranged in a similar sequence to your syllabus, but with AS and A Level content clearly separated into the two halves of the book.

Figure 13.3 or a similar graph of displacement against time illustrates the following important definitions about waves and wave motion:

- The distance of a point on the wave from its undisturbed position or equilibrium position is called the displacement
 The maximum displacement of any point on the wave
- The maximum splacement of any point of the wave from its undisturbed position is called the amplitude A. The amplitude of a wave on the sea is measured in units of distance, e.g. metres. The greater the amplitude of the wave, the louder the sound or the rougher the sea! The distance from any point on a wave to the next exactly
- The distance from any point on a wave to the next exactly similar point (e.g. crest to crest) is called the wavelength λ (the Greek letter lambda). The wavelength of a wave on the sea is measured in units of distance, e.g. metres.
- The time taken for one complete oscillation of a point in a wave is called the period *T*. It is the time taken for a point to move from one particular position and return to that same position, moving in the same direction. It is measured in units of time, e.g. seconds..
- The number of oscillations per unit time of a point in a wave is called its **frequency** *f*. For sound waves, the higher the frequency of a musical note, the higher is its pitch. Frequency is measured in hertz (Hz), where 1 Hz = one oscillation per second (1 kHz = 10³ Hz and 1 MHz = 10⁶ Hz). The frequency *f* of a wave is the reciprocal of the period *T*: $f = \frac{1}{T}$

Waves are called **mechanical waves** if they need a substance (medium) through which to travel. Sound is one example of such a wave. Other cases are waves on strings, seismic waves and water waves (Figure 13.4). Some properties of typical waves are given on page 183 in Table 13.1.

Figure 13.4 The impact of a droplet on the surface of a liquid creates a vibration, which in turn gives rise to waves on the surface.

Figure 13.5 Two waves - for Question 1.

0X 13.1: Measuring frequence

You can measure the frequency of sound waves using a cathode-ray oscilloscope (c.r.o.). Figure 13.6 shows how.

A microphone is connected to the input of the c.r.o. Sound waves are captured by the microphone and converted into a varying voltage which has the same frequency as the sound waves. This voltage is displayed on the c.r.o. screen. It is best to think of a c.r.o. as a voltmeter which

It is best to think of a c.r.o. as a voltmeter which is capable of displaying a rapidly varying voltage. To do this, its spot moves across the screen at a steady speed, set by the time-base control. At the same time, the spot moves up and down according to the voltage of the input.

Hence the display on the screen is a graph of the varying voltage, with time on the (horizontal) *x*-axis. If we know the horizontal scale, we can determine the period and hence the frequency of the sound wave. Worked example 1 shows how to do this. (In Chapter 15 we will look at one method of measuring the wavelength of sound waves.)

Figure 13.6 Measuring the frequency of sound waves from a tuning fork.

Questions throughout the text give you a chance to check that you have understood the topic you have just read about. You can find the answers to these questions on the CD-ROM.

This book does not contain detailed instructions for doing particular experiments, but you will find background information about the practical work you need to do in these Boxes. There are also two chapters, P1 and P2, which provide detailed information about the practical skills you need to develop during your course.

Important equations and other facts are shown in highlight boxes.

For an object of mass *m* travelling at a speed *v*, we have: kinetic energy = $\frac{1}{2}$ × mass × speed² $E_k = \frac{1}{2}mv^2$

There is a summary of key points at the end of each chapter. You might find this helpful when you are revising.

Summary

- Forces are vector quantities that can be added by means of a vector triangle. Their resultant can be determined using trigonometry or by scale drawing.
- Vectors such as forces can be resolved into components. Components at right angles to one another can be treated independently of one another.
 For a force F at an angle 0 to the x-direction, the components are:

x-direction: $F \cos \theta$ *y*-direction: $F \sin \theta$

- The moment of a force = force × perpendicular distance of the pivot from the line of action of the force.
- The principle of moments states that, for any object that is in equilibrium, the sum of the clockwise moments about any point provided by the forces acting on the object equals the sum of the anticlockwise moments about that same point.
- A couple is a pair of equal, parallel but opposite forces whose effect is to produce a turning effect on a body without giving it linear acceleration.
 torque of a couple = one of the forces × perpendicular distance between the forces
- For an object to be in equilibrium, the resultant force acting on the object must be zero and the resultant moment must be zero.

Questions at the end of each chapter begin with shorter answer questions, then move on to more demanding exam-style questions, some of which may require use of knowledge from previous chapters. Answers to these questions can be found on the CD–ROM.

