Multivariate Analysis of Ecological Data using Canoco 5

This revised and updated edition focuses on constrained ordination (RDA, CCA), variation partitioning and the use of permutation tests of statistical hypotheses about multivariate data. Both classification and modern regression methods (GLM, GAM, loess) are reviewed and species functional traits and spatial structures are analysed.

Nine case studies of varying difficulty help to illustrate the suggested analytical methods, using the latest version of Canoco 5. All studies utilise descriptive and manipulative approaches, and are supported by data sets and project files available from the book website: http://regent.prf.jcu.cz/maed2/.

Written primarily for community ecologists needing to analyse data resulting from field observations and experiments, this book is a valuable resource for students and researchers dealing with both simple and complex ecological problems, such as the variation of biotic communities with environmental conditions or their response to experimental manipulation.

Petr Šmilauer is Associate Professor of Ecology in the Department of Ecosystem Biology, at the University of South Bohemia. His main research interests are: multivariate statistical analysis, modern regression methods, as well as the role of arbuscular mycorrhizal symbiosis in plant communities. He is co-author of the multivariate analysis software Canoco 5, CANOCO for Windows 4.5, CanoDraw, and TWINSPAN for Windows.

Jan Lepš is Professor of Ecology in the Department of Botany, at the University of South Bohemia, and in the Institute of Entomology at the Czech Academy of Sciences. His main research interests include: plant community biology, statistical analysis in the field of ecology, as well as the studies of species diversity, and the role of functional traits in plant community ecology and ecology of hemiparasitic plants. Together with P. Šmilauer, he regularly offers international courses on multivariate statistics.
Multivariate Analysis of
Ecological Data using Canoco 5
Second Edition

PETR ŠMILAUER
University of South Bohemia, Czech Republic

JAN LEPŠ
University of South Bohemia, Czech Republic
Contents

Preface page x

1 *Introduction and data types* 1
 1.1 Why ordination? 1
 1.2 Data types 4
 1.3 Data transformation and standardisation 7
 1.4 Missing values 11
 1.5 Types of analyses 12

2 *Using Canoco 5* 15
 2.1 Philosophy of Canoco 5 15
 2.2 Data import and editing 17
 2.3 Defining analyses 24
 2.4 Visualising results 33
 2.5 Beware, CANOCO 4.x users! 36

3 *Experimental design* 39
 3.1 Completely randomised design 39
 3.2 Randomised complete blocks 40
 3.3 Latin square design 41
 3.4 Pseudoreplicates 42
 3.5 Combining more than one factor 44
 3.6 Following the development of objects in time: repeated observations 45
 3.7 Experimental and observational data 48

4 *Basics of gradient analysis* 50
 4.1 Techniques of gradient analysis 51
 4.2 Models of response to gradients 51
 4.3 Estimating species optima by weighted averaging 53
 4.4 Calibration 56
 4.5 Unconstrained ordination 57
Contents

4.6 Constrained ordination 60
4.7 Basic ordination techniques 61
4.8 Ordination axes as optimal predictors 62
4.9 Ordination diagrams 64
4.10 Two approaches 66
4.11 Testing significance of the relation with explanatory variables 66
4.12 Monte Carlo permutation tests for the significance of regression 67
4.13 Relating two biotic communities 68
4.14 Community composition as a cause: using reverse analysis 69

5 Permutation tests and variation partitioning 71
5.1 Permutation tests: the philosophy 71
5.2 Pseudo-F statistics and significance 72
5.3 Testing individual constrained axes 74
5.4 Tests with spatial or temporal constraints 75
5.5 Tests with hierarchical constraints 79
5.6 Simple versus conditional effects and stepwise selection 83
5.7 Variation partitioning 88
5.8 Significance adjustment for multiple tests 91

6 Similarity measures and distance-based methods 92
6.1 Similarity measures for presence–absence data 93
6.2 Similarity measures for quantitative data 96
6.3 Similarity of cases versus similarity of communities 101
6.4 Similarity between species in trait values 102
6.5 Principal coordinates analysis 103
6.6 Constrained principal coordinates analysis (db–RDA) 106
6.7 Non-metric multidimensional scaling 107
6.8 Mantel test 108

7 Classification methods 112
7.1 Example data set properties 112
7.2 Non-hierarchical classification (K-means clustering) 113
7.3 Hierarchical classification 116
7.4 TWINSPAN 121

8 Regression methods 129
8.1 Regression models in general 129
8.2 General linear model: terms 131
8.3 Generalized linear models (GLM) 133
8.4 Loess smoother 135
8.5 Generalized additive models (GAM) 136
8.6 Mixed-effect models (LMM, GLMM and GAMM) 137
8.7 Classification and regression trees (CART) 139
8.8 Modelling species response curves with Canoco 140

9 Interpreting community composition with functional traits 151
9.1 Required data 152
9.2 Two approaches in traits – environment studies 154
9.3 Community-based approach 158
9.4 Species-based approach 162

10 Advanced use of ordination 167
10.1 Principal response curves (PRC) 167
10.2 Separating spatial variation 169
10.3 Linear discriminant analysis 173
10.4 Hierarchical analysis of community variation 174
10.5 Partitioning diversity indices into alpha and beta components 177
10.6 Predicting community composition 182

11 Visualising multivariate data 184
11.1 Reading ordination diagrams of linear methods 186
11.2 Reading ordination diagrams of unimodal methods 195
11.3 Attribute plots 199
11.4 Visualising classification, groups, and sequences 202
11.5 T-value biplot 205

12 Case study 1: Variation in forest bird assemblages 208
12.1 Unconstrained ordination: portraying variation in bird community 209
12.2 Simple constrained ordination: the effect of altitude on bird community 215
12.3 Partial constrained ordination: additional effect of other habitat characteristics 218
12.4 Separating and testing alpha and beta diversity 221

13 Case study 2: Search for community composition patterns and their environmental correlates: vegetation of spring meadows 226
13.1 Unconstrained ordination 227
13.2 Constrained ordination 230
13.3 Classification 237
13.4 Suggestions for additional analyses 238
13.5 Comparing two communities 239
Contents

14 Case study 3: Separating the effects of explanatory variables
14.1 Introduction
14.2 Data
14.3 Changes in species richness and composition
14.4 Changes in species traits

15 Case study 4: Evaluation of experiments in randomised complete blocks
15.1 Introduction
15.2 Data
15.3 Analysis
15.4 Calculating ANOVA using constrained ordination

16 Case study 5: Analysis of repeated observations of species composition from a factorial experiment
16.1 Introduction
16.2 Experimental design
16.3 Data coding and use
16.4 Univariate analyses
16.5 Constrained ordinations
16.6 Principal response curves
16.7 Temporal changes across treatments
16.8 Changes in composition of functional traits

17 Case study 6: Hierarchical analysis of crayfish community variation
17.1 Data and design
17.2 Differences among sampling locations
17.3 Hierarchical decomposition of community variation

18 Case study 7: Analysis of taxonomic data with discriminant analysis and distance-based ordination
18.1 Data
18.2 Summarising morphological data with PCA
18.3 Linear discriminant analysis of morphological data
18.4 Principal coordinates analysis of AFLP data
18.5 Testing taxon differences in AFLP data using db-RDA
18.6 Taking populations into account

19 Case study 8: Separating effects of space and environment on oribatid community with PCNM
19.1 Ignoring the space
19.2 Detecting spatial trends

<table>
<thead>
<tr>
<th>19.3 All-scale spatial variation of community and environment</th>
<th>328</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.4 Variation partitioning with spatial predictors</td>
<td>332</td>
</tr>
<tr>
<td>19.5 Visualising spatial variation</td>
<td>333</td>
</tr>
<tr>
<td>20 Case study 9: Performing linear regression with redundancy analysis</td>
<td>337</td>
</tr>
<tr>
<td>20.1 Data</td>
<td>337</td>
</tr>
<tr>
<td>20.2 Linear regression using program R</td>
<td>337</td>
</tr>
<tr>
<td>20.3 Linear regression with redundancy analysis</td>
<td>340</td>
</tr>
<tr>
<td>20.4 Fitting generalized linear models in Canoco</td>
<td>342</td>
</tr>
</tbody>
</table>

Appendix A Glossary 343
Appendix B Sample data sets and projects 346
Appendix C Access to Canoco and overview of other software 347
Appendix D Working with R 350

References 351
Index to useful tasks in Canoco 5 359
Subject index 360
Preface

The multidimensional data on community composition, properties of individual populations, or properties of environment are the bread and butter of an ecologist’s life. Such data need to be analysed taking into account their multidimensionality. A reductionist approach of looking at the properties of each variable separately does not work in most cases. The methods for statistical analysis of such data sets fit under the umbrella of ‘multivariate statistical methods’.

In this book, we present a consistent set of approaches to answer many of the questions that an ecologist might have about the studied systems. Nevertheless, we happily admit that other quantitative ecologists may approach the same set of questions with a toolbox of methods (partly) different from those presented here. We pay only a limited attention to other, less parametric methods, such as the family of non-metric multidimensional scaling (NMDS) algorithms or the group of methods similar to the Mantel test. We do not want to fuel the sometimes seen controversy between proponents of various approaches to analysing multivariate data. We simply claim that the solutions presented here are not the only ones possible, but they worked for us, as well as for many other researchers.

We also give greater emphasis to ordination methods compared to classification approaches, but we do not imply that the classification methods are not useful. Our description of multivariate methods is extended by a short overview of regression analysis, including some of the more recent developments such as the generalized additive models or CART models, because the regression models often complement the results of multivariate analyses.

We assume the reader has knowledge of testing statistical hypotheses, of linear regression and ANOVA in the range covered by introductory statistical courses for undergraduates and we make no attempt here to explain corresponding terms or principles.

Our intention is to provide the reader with both the basic understanding of principles of multivariate methods and the skills needed to use those methods in his/her own work. Consequently, the methods are illustrated by examples. For all of them, we provide the data on our web page (see Appendix B), and for all the analyses carried out by the Canoco\(^1\) program, we also provide Canoco 5 project files, containing analyses with required settings and precomputed results.

\(^1\) Although the CANOCO name was originally an acronym, it became a recognized entity over the years and this is reflected in the change from upper-case letters, as also made in the Canoco 5 manual.
The nine case studies which conclude the book contain tutorials, where the project/analysis options are explained and the software use is described. The individual case studies differ intentionally in the depth of explanation of the necessary steps. In the first two case studies, the tutorial is more in a ‘cookbook’ form, whereas a detailed description of individual steps in the subsequent case studies is only provided for the more complicated and advanced methods that are not described in the preceding tutorial chapters. You can work with offered case studies in any order, but if you are new to ordination methods, we recommend you to read at least Chapters 1 to 4 first, and if you are an experienced user of ordination methods (including constrained ones), but not yet friendly with Canoco software, read at least Chapter 2 that introduces the Canoco program\(^2\) and then start with Case studies 1 and 2. The ‘Index to useful tasks in Canoco 5’, which is located before the standard Index, allows the reader to quickly find solutions to many common technical tasks in work with Canoco 5 software, which are described in this book.

In the second edition, we have tried to cater for both beginning and more advanced users. We have therefore put many of the more advanced comments or suggestions into an extensive set of footnotes. The main text of this book can be understood while ignoring the footnotes, but they provide greater insight for the advanced topics or explain technical details.

The methods discussed in this book are widely used among plant, animal and soil biologists, as well as in freshwater and marine biology or in landscape ecology. In most of these fields, the methods are now routinely applied also to the data sets obtained with molecular biology techniques.

We hope that this book provides an easy-to-read supplement to the more exact and detailed publications such as the collection of Cajo ter Braak’s papers, the Canoco 5 manual, or the Legendre and Legendre (2012) textbook. The Reference manual and user’s guide to the new version of Canoco 5 is, in fact, so often referred to that instead of citing Ter Braak and Šmilauer (2012), we use ‘Canoco 5 manual’ throughout this book.

In some case studies, we needed to compare multivariate methods with their univariate counterparts. The univariate methods are demonstrated using the freely available R software (R Core Team 2013), which can be also used to work with multivariate methods described here, but not available in Canoco 5 software (cluster analysis, Mantel test). See Appendix D for a link to a brief tutorial on working with R (in the context of tasks present in this book). But these methods are also available in other statistical packages so the readers can hopefully use their favourite software, if different from R (see Appendix C with an overview of alternative software for multivariate statistical analysis).

Please note that we have omitted the trademark and registered trademark symbols when referring to commercial software products.

We would like to thank John Birks, Robert Pillsbury, and Samara Hamzé for correcting our English in the first edition. We are grateful to all who read drafts of the first edition and gave us many useful comments: Cajo ter Braak, John Birks, Mike Palmer, and Marek Rejmánek; additional useful comments on the text and the language were provided by

\(^2\) Reading Chapter 2 is recommended even to experienced users of CANOCO version 4.0 or 4.5.
the students of Oklahoma State University: Jerad Linneman, Jerry Husak, Kris Karsten, Raelene Crandall, and Krysten Schuler.

We are much indebted to Mike Palmer for his meticulous reading of the whole manuscript of the second edition and many great suggestions concerning the language, presented theory and book usability, vastly improving the book quality. We are thankful to Cajo ter Braak for his numerous comments on the second edition. Francesco de Bello provided multiple suggestions on the text concerning the analysis of species traits.

Camille Flinders, Michal Hájek, and Milan Štech kindly provided data sets, respectively, for case studies 6, 2, and 7.

PŠ wants to thank his wife Marie for her continuous support (and drawing Figure 10–3) and to his daughters Marie and Tereza for their patience with him. He also insisted on stating that the ordering of authorship is based purely on the alphabetical order of their names, this time reversed – for a change from the first edition.

JL wants to thank his parents and Olina for support, his daughters Anna and Tereza for patience and his grandchildren Anna, Eliška, and Matěj for keeping him in a good mood.