

Revision Guide

Cambridge International AS and A Level

Computing

Tony Piper

CAMBRIDGE UNIVERSITY PRESS

4381/4 Ansari Road, Daryaganj, Delhi 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107690554

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in India by

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-69055-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

.....

NOTICE TO TEACHERS IN THE UK

It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following circumstances:

- (i) where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;
- (ii) where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of Cambridge University Press;
- (iii) where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for example, the reproduction of short passages within certain types of educational anthology and reproduction for the purposes of setting examination questions.

NOTICE TO TEACHERS

The phtocopy masters in this publication may be photocopied or distributed [electronically] free of charge for classroom use within the school or institution that purchased the publication. Worksheets and copies of them remain in the copyright of Cambridge University Press, and such copies may not be distributed or used in any way outside the purchasing institution.

.....

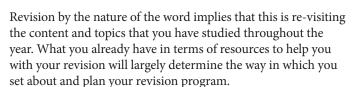
Every effort has been made to trace the owners of copyright material included in this book. The publishers would be grateful for any omissions brought to their notice for acknowledgement in future editions of the book.

Contents

Revision Guidelines	vii	3.8 Backing up data and archiving Exam-style Questions	24 25
Acknowledgement	xi	Zadii otyo Questioni	20
Section 1 System Software	1	Chapter 4 Hardware	27
Chapter 1 Components of a Computer System and Modes of Use	3	4.2 Primary memory (or Main memory)4.3 Secondary storage4.4 Buffers	27 29 30 32
1.1 Hardware, software, input devices, storage devices and output devices1.2 Different types of software Exam-style Questions	3 4 6	4.5 Peripheral devices Exam-style Questions Chapter 5 Data Transmission and	32 35
	_		37
Chapter 2 System Software 2.1 The Operating System (OS) 2.2 User interfaces 2.3 Utility software Exam-style Questions Chapter 3 Data Representation, Structure and Management 3.1 The use of codes to represent a character set 3.2 The representation of different data types 3.3 Express positive integers in binary form 3.4 Understand the structure of arrays 3.5 The LEO and ELEO features of steeles and guesses	7 9 12 14 16 16 17 18 19 20	 5.6 Detecting and correcting errors in data transmission 5.7 Difference between packet switching and circuit switching 5.8 Protocols 5.9 The need for both physical and logical protocols and the need for layering in an interface Exam-style Questions 	37 38 38 39 41 41 43 44 45
 3.5 The LIFO and FIFO features of stacks and queues 3.6 Storing data in files in the form of fixed length records comprising items in fields 3.7 Serial, sequential, indexed sequential and random access to data and implementing serial, sequential and random organisation of files using indexes and hashing as appropriate 	20 21 22	Chapter 6 System Life Cycle 6.1 The importance of defining a problem accurately 6.2 The function and purpose of a feasibility study 6.3 Different methods of fact finding 6.4 Requirements of a system 6.5 Design the data structures, inputs, outputs and processing	48 49 49 50
as appropriate	44	processing	$\mathcal{I}_{\mathbf{I}}$

iv Contents

6.7	The importance of evaluating the system against initial specifications Documentation in the system life cycle Testing and installation	54 54 55	Section 2 Data Types and Data Structures	85
	Maintaining the system Exam-style Questions	56 57	Chapter 11 Designing Solutions to Problems	87
7.1 7.2 7.3	apter 7 Choosing Appropriate Applications Software Application software Features of common applications Categories of software Application areas for which generic applications	59 60 61	 11.1 The importance of good interface design 11.2 Design and document data capture forms, screen layouts, report layouts or other forms of input and output 11.3 Structure diagram 11.4 Program flowchart 11.5 Pseudocode 	87 87 89 90 92
	software is not appropriate Exam-style Questions	65 66	Chapter 12 The Structure of Procedural Programs	93
8.1 8.2 8.3 8.4 8.5 8.6	Apter 8 Handling of Data in Information Systems Manual and automatic methods of data capture Image capture The techniques of validation and verification Output formats Knowledge based (expert) systems The use of knowledge based (expert) systems as a diagnostic tool Exam-style Questions apter 9 Designing the User Interface	67 68 69 70 72 72 73	12.1 Procedural programming languages 12.2 Selection 12.3 Iteration 12.4 Procedures and functions 12.5 Recursion 12.6 Recursive or iteration algorithm Chapter 13 Data Types and Data Structures 13.1 Data types 13.2 Arrays 13.3 Record structure 13.4 File handling basics 13.5 Estimating the file size 13.6 File processing Exam-style Questions	93 94 95 96 101 102 103 104 106 107 108 109 110
9.2	The importance of good interface design Human Computer Interaction (HCI) design issues The required characteristics of a user interface Exam-style Questions	74 74 76 77	14.1 Assignment14.2 Arithmetic operators14.3 Relational operators	111 111 111 111
10.1	Effects of logic gates on binary signals in a processor Calculating the output from a set of logic gates given the input Exam-style Questions	79 79 80 81	 14.4 Boolean operators 14.5 Parentheses and precedence 14.6 String manipulation built-in functions 14.7 Relational operations on alphanumeric strings depend on binary codes of the characters 14.8 Input and validate data 14.9 Output data 	112 112 112 114 114 115


		Conten	ıts v
Chapter 15 Writing Maintainable		18.6 The code generation phase, and the need	
Programs	116	for optimisation	151
15.1 Programming terms	116	18.7 The purpose of linkers and loaders, and the use of library routines	151
15.2 Meaningful identifier names	117	18.8 How errors are recognised and handled during	131
15.3 Initialising variables	117	compilation	152
15.4 Annotating code with comments	117	Exam-style Questions	152
15.5 Indentation	117		
Chapter 16 Testing and Running a		Chapter 19 Computer Architecture	
Solution	119	and the Fetch-execute	
		Cycle	154
16.1 Types of errors	119	•	
16.2 Testing strategies16.3 Test data	120 121	19.1 Basic Von Neumann architecture	154
16.4 Perform a dry run on a given algorithm,	121	19.2 The fetch/decode/execute cycle19.3 Data, Address and Control Buses	154 156
using a trace table	122	19.4 Parallel processing systems	157
16.5 Debugging tools and facilities	123	Exam-style Questions	157
Exam-style Questions	127		
Section 3 Data Representation,		Chapter 20 Data Representation,	
		Data Structures and Data	
Data Structures and		Manipulation	159
Data Manipulation	137	•	
		20.1 Express numbers in Binary Coded Decimal (BCD) and hexadecimal	159
Chapter 17 The Functions of		20.2 Representing positive and negative integers	139
Operating Systems	139	using two's complement, and sign-	
17.1 Scheduling	139	and-magnitude	160
17.2 The main features of operating systems	139	20.3 Perform integer binary addition	161
17.3 CPU Scheduling algorithms	141	20.4 Binary floating point representation of a	
17.4 Interrupt	142	real number	161
17.5 Spooling	143	20.5 Normalise the floating point representation	1.60
17.6 The main components of a typical PC	1.42	of a number	162
operating system Exam-style Questions	143 144	20.6 The trade-off between accuracy and range when representing numbers in	
Exam-style Questions	144	floating-point form	163
Chapter 18 The Functions and		20.7 Algorithms for the insertion, retrieval and	100
·	145	deletion of data items to data structures	163
Purposes of Translators	145	20.8 The use of a binary tree to sort data	168
18.1 The relationship between assembly language		20.9 Difference between binary searching and	
and machine code	145	serial searching	170
18.2 How an assembler produces machine code	1.46	20.10 Difference between static and dynamic	150
from assembly language 18.3 The difference between interpretation and	146	implementation of data structures 20.11 Algorithms for implementing insertion	172
compilation	147	sort and quick sort	172
18.4 Lexical analysis	149	20.12 Merging data files	174
18.5 Syntax analysis	150	Exam-style Questions	176

vi Contents

Cha	pter 21 Programming		22.5	Database Management System (DBMS)	200
	Paradigms	179	22.6	'Database Approach' versus 'File based	• • •
21.1	Characteristics of a variety of programming		22 =	Approach'	201
21.1	, , , ,	179		Data description language (DDL)	202
21.2	paradigms	1/9		Data manipulation language (DML)	203
21.2	The terms object-oriented, declarative and	100	22.9	Normalisation	203
21.2	procedural as applied to high-level languages	180		Exam-style Questions	206
21.3	Interpret and create class and object diagrams	183			
	Declarative languages	183	Cha	mton 22 Circulation and Dool time	
21.5	Showing an understanding of backtracking,		Cna	pter 23 Simulation and Real-time	
	instantiation and satisfying goals when			Processing	208
	referring to declarative languages	184	23.1	Real-time applications	208
	Procedural programming	187		The use of sensors for detecting physical signals	208
21.7	Stepwise refinement	187		The use of actuators	209
21.8	Standard programming techniques	188		Robots	209
21.9		189		Simulation	210
21.10	The concepts of immediate, direct, indirect, inde	exed			210
	and relative addressing of memory when		23.0	Advantages of simulation in testing the	212
	referring to low-level languages	189		feasibility of a design	212
21.11	Backus-Naur Form (BNF)	190		Exam-style Questions	212
21.12	Syntax diagrams	191			
21.13	Reverse Polish notation	192	Cha	pter 24 Networking	214
21.14	Convert between reverse Polish notation		Cila	pter 24 Networking	214
	and the infix form of algebraic expressions		24.1	Different media for transmitting data and	
	using trees and stacks	192		their carrying capabilities	214
	Exam-style Questions	194	24.2	Network components	216
			24.3	Common network environments	217
Cha	pter 22 Databases	196	24.4	Security of data on an open network	218
Cila	pter 22 Batabases	170		Encryption, authorisation and	
22.1	Flat files and relational databases	196		authentication techniques	218
22.2	Designing a simple relational database to			Exam-style Questions	220
	third normal form (3NF)	197		•	
22.3	Primary, secondary and foreign keys	198		Answers and Tips	222
22.4	Entity-Relationship (E-R) diagrams	199		Index	251

Revision **Guidelines**

Key issues include:

- Have you got a copy of the textbook you have followed throughout your course?
- Did you use it as your course progressed to make your own notes?
- Has your teacher provided you with notes as each topic has been covered?
- Have you worked through worksheets prepared by your teacher?

All of these are a good starting point and your first revision task is to gather together all the materials you have produced and accumulated throughout the course. Organise them in the same way as the syllabus you are revising for.

When should I start revising?

As early as possible. Examinations are generally a stressful time and so you need to do everything possible to make this a 'stress free' experience.

A trawl through all the materials you have should establish:

- What topics you have clear notes for and where you do not
- Topics where you can do lots of practice, for example, the number systems content in section 3.4
- Topics which you are definitely confident about and those that you are not.

All questions must be answered in the exam

You must not have large gaps in your understanding and skills to apply this knowledge. Both are important. The trend generally for all advanced level examinations is away from questions which only ask you to reproduce basic knowledge, for example reproducing a basic definition. For a question about database design this could be 'State what is meant by a primary key and a foreign key'. However, a much better assessment of your ability will be if you are able to apply this to a given simple

practical scenario. The question you are more likely to face is -'Which attribute would be the primary key for table X' – 'How is the relationship formed using a foreign key to table Y.'

Computing is a practical based subject – probably second only to engineering - and so it is reasonable that your computing examination papers should reflect this with questions that require answers which apply your knowledge in the context of practical scenarios.

Past examination paper questions

Looking at as many previous questions as possible can be a very valuable part of revision. Many examples from Cambridge past papers have been carefully selected and included at the end of each section in the course textbook.

Cambridge International Examinations bears no responsibility for the example answers to questions taken from its past question papers which are contained in this publication.

Your teacher will be able to supply you with further past papers and specimen papers and guide you to relevant questions for the syllabus you are following.

So, you've trawled through and organised the materials you have produced throughout the course – what next?

Specific Revision Materials

Cambridge International AS and A Level Computing Revision Guide

This is a new book from Cambridge University Press. The organisation is identical to the course textbook and has frequent 'test yourself' questions as you work through each section.

Revision cards

These are a favourite with students and have the obvious advantage that you can carry them around with you and dip into them in any odd five minutes you can find. Cards are available in different colours and so you could easily develop a system to

viii Revision Guidelines

code cards on the same general topic in the same colour. See the example for Chapter 22 on Databases which follows.

How will you organise the cards?

- ✓ Separate sets for each section
- ✓ Separate sets for each topic

Database design

Attribute – Data item recorded as part of a database design.

Entity – In database design, something about which we record data, for example, a Customer. Entities are implemented as tables.

Primary key – An attribute (or combination of attributes) chosen to ensure that all the records in a table are unique.

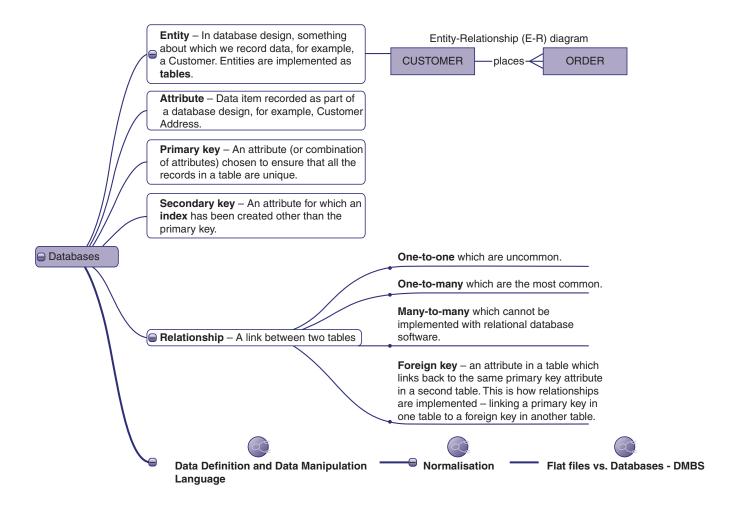
Secondary key – An attribute for which an *index* has been created other than the primary key.

Relationship – A link between two tables.

Can be:

- One-to-one which are uncommon
- One-to-many the most common
- Many-to-many which cannot be implemented with relational database software.

Foreign key – An attribute in a table which links back to the same primary key attribute in a second table.


See also cards:

- Normalisation
- Flat files versus Databases and Database Management Systems
- Data Definition Language (DDL) and Data Manipulation Language (DML)

Section 3 of the Cambridge syllabus requires that you are also familiar with related topics studied in Section 1. You could devise a system to quickly reference cards to each other where some of the cards have content which was first studied in Section 1 are referenced easily?

Mind mapping

Mind maps provide an effective way to break the content down into manageable amounts and if you are a person who 'thinks visually' then you will probably take to mind mapping. My experience is that students tend to be polarised into 'I like using them' or 'I hate them' but I have found that students do agree they are a useful revision tool. A simple example is shown for (some of) the database content for Chapter 22.

Revision Guidelines

ix

Also there is available on the World Wide Web free mind mapping software and this usually has features which are very appropriate for revision:

- ✓ The expansion (for the detail) and collapsing (to see the 'big picture') of branches
- ✓ The inclusion of graphics.

How do I revise?

What time of day?

There are all sorts of conflicting evidence about when your brain is at its most receptive! You will need to decide what time of day seems to work best for you and how long each session should be.

Shall I revise on my own?

Maybe, but it will be much less daunting if you team up with a fellow student – a 'revision buddy' – and revise together. This could include:

- ✓ Share the work of producing the revision cards and/or the mind maps
- ✓ Test each other on some basic definitions and the factual knowledge of a topic.

Do lots of past examination questions

But consider carefully what 'doing examination questions' actually means for you. It is tempting to look at a question then, talking to yourself recite the answer you would give – then move on to another question. That might be sufficient, but remember the examination is a *written* paper and so why not spend the extra time in writing out the answer on rough paper? That way when you read it back it may be clear that there are some points which you have omitted or some points where the meaning when reading it back is unclear.

Seek advice

You need to be confident with all the syllabus content (remember there is no choice of questions) so don't try to bury problems and topic areas where you are unsure. Your revision buddy may be confident about it and after five minutes of him/her talking it through, something about which you have been unclear for six months, becomes clear for the first time. Failing that, be honest that you are unsure and seek help from your teacher. Problems will not go away and solve themselves – you must be pro-active in plugging the gaps in your understanding.

On the day – Examination technique

Reading the paper

It is sensible to read the entire paper before you start to attempt any of the questions. This will give you a good idea as to the questions you are confident about and those which may need more time spent on them.

The number of marks is a good indicator of the time the examiner expects you to take. For example, if a paper has a total of 90 marks and 2 hours to complete every three marks should take 4 minutes – or a ten mark question should take around 13 minutes.

Layout of the paper

All papers have the questions displayed in the answer booklet so the amount of space provided is an indicator of the length of answer the examiner is expecting.

Is it important to answer the questions in a paper in order? You do not need to answer the questions in order. As a general rule questions which are considered less demanding will be at the start of the paper.

Question keywords

Some questions will have a short introduction and this will apply to all parts of the questions which follow. Specific questions will each have a keyword which is the indicator as to the style of answer expected.

'Define ...' – 'State ...' – 'Give ...' all require an answer of only one or only a few words giving a short and concise answer. For example: Give the attributes for the Loan table below, showing the primary key.

You should not create a LoanID for this table.	
Loan ()	
	(2 marks)

'Describe ...' now wants more detail and the indicator of precisely how much is the number of marks for the question; a three mark question will usually require three different points to be made. For example 'Describe how an assembly language program is translated into machine code'.

'Explain ...' now wants not only a description but the answer will contain some reasoning. For example: 'Explain why an interpreter has better diagnostics features than compiler software'.

x Revision Guidelines

The following question – taken from a Cambridge past-paper illustrates many of these points.

Question from a Cambridge past-paper

1. (a)	State what is meant by a real-time application.
	There is no introductory statement. The keyword is 'State' and what is wanted is the basis 'bookwork' definition of a real-time system.
(b)	An air conditioning system is a real-time application. Explain how sensors and actuators are used to control an air conditioning system in an apartment.
	The introductory statement applies to part (b) only. The keyword is 'Explain'and there are four marks. The answer must make at least four clear points describing how temperature sensors send data values to the processor – how they are processed – when an actuator is involved.
(c)	Give one other example of a real-time application. Justify why your choice is a real-time application. Example
	Justification Keyword is 'Give' but you are having to be more resourceful and come up with your own example of a real-time system. The key requirements are the
	example and its justification and the paper makes it clear how you are to present this. You can assume there
	will be one mark for the example and the second mark for the justification.

Cambridge 9691 Paper 31 Q4 June 2011

The following is reproduced by permission of Cambridge International Examinations:

Syllabus Name and Code	Paper and Question Number	Month/Year	Chapter/Page in Book
Cambridge International AS and A Level Computing 9691	Paper 31 Q4	June 2011	Revision Guidelines, Page X
Cambridge International AS and A Level Computing 9691	Paper 11 Q1(a)	June 2011	Chapter 1 Page 6
Cambridge International AS and A Level Computing 9691	Paper 11 Q1(a) & (b)	November 2011	Chapter 1 Page 6
Cambridge International AS and A Level Computing 9691	Paper 11 Q1(b)	June 2012	Chapter 1 Page 6
Cambridge International AS and A Level Computing 9691	Specimen Paper 1 Q1		Chapter 2 Page 14
Cambridge International AS and A Level Computing 9691	Paper 1 Q5	June 2009	Chapter 2 Page 15
Cambridge International AS and A Level Computing 9691	Paper 11 Q3	June 2011	Chapter 3 Page 25
Cambridge International AS and A Level Computing 9691	Paper 11 Q5	November 2011	Chapter 3 Page 26
Cambridge International AS and A Level Computing 9691	Paper 11 Q7(b)(ii)	November 2011	Chapter 3 Page 26
Cambridge International AS and A Level Computing 9691	Paper 13 Q5	June 2011	Chapter 4 Page 36
Cambridge International AS and A Level Computing 9691	Paper 12 Q1(b)	November 2011	Chapter 4 Page 36
Cambridge International AS and A Level Computing 9691	Paper 12 Q6	November 2011	Chapter 4 Page 36
Cambridge International AS and A Level Computing 9691	Paper 12 Q7(b)	November 2011	Chapter 4 Page 36
Cambridge International AS and A Level Computing 9691	Specimen Paper 1 Q8		Chapter 5 Page 46
Cambridge International AS and A Level Computing 9691	Paper 11 Q8	June 2011	Chapter 5 Page 46
Cambridge International AS and A Level Computing 9691	Paper 11 Q8	November 2011	Chapter 5 Page 47
Cambridge International AS and A Level Computing 9691	Paper 11 Q1(b) & (c)	June 2011	Chapter 5 Page 47
Cambridge International AS and A Level Computing 9691	Paper 11 Q2	June 2011	Chapter 6 Page 57
Cambridge International AS and A Level Computing 9691	Paper 11 Q2	November 2011	Chapter 6 Page 58

(Continued)

xii Acknowledgement

Syllabus Name and Code	Paper and Question Number	Month/Year	Chapter/Page in Book
Cambridge International AS and A Level Computing 9691	Paper 11 Q5	June 2012	Chapter 6 Page 58
Cambridge International AS and A Level Computing 9691	Paper 11 Q8	November 2010	Chapter 6 Page 58
Cambridge International AS and A Level Computing 9691	Paper 11 Q1(d)	June 2011	Chapter 7 Page 66
Cambridge International AS and A Level Computing 9691	Paper 11 Q2(a) & (b)	June 2012	Chapter 7 Page 66
Cambridge International AS and A Level Computing 9691	Specimen Paper 1 Q5		Chapter 8 Page 73
Cambridge International AS and A Level Computing 9691	Paper 11 Q4	November 2011	Chapter 8 Page 73
Cambridge International AS and A Level Computing 9691	Paper 11 Q1(b) & (c)	June 2011	Chapter 8 Page 73
Cambridge International AS and A Level Computing 9691	Specimen Paper 1 Q4(c)		Chapter 9 Page 77
Cambridge International AS and A Level Computing 9691	Paper 11 Q7	June 2011	Chapter 9 Page 78
Cambridge International AS and A Level Computing 9691	Paper 11 Q3	November 2011	Chapter 9 Page 78
Cambridge International AS and A Level Computing 9691	Paper 11 Q7 (a)(i)	November 2011	Chapter 9 Page 78
Cambridge International AS and A Level Computing 9691	Specimen Paper 1 Q7		Chapter 10 Page 82
Cambridge International AS and A Level Computing 9691	Paper 11 Q9(b)	June 2012	Chapter 10 Page 82
Cambridge International AS and A Level Computing 9691	Paper 13 Q6	June 2011	Chapter 10 Page 82
Cambridge International AS and A Level Computing 9691	Paper 12 Q9	November 2011	Chapter 10 Page 83
Cambridge International AS and A Level Computing 9691	Specimen Paper 2 Q1(b) (c) & (d)		Chapter 13 Page 110
Cambridge International AS and A Level Computing 9691	Paper 13 Q9	June 2010	Chapter 13 Page 110
Cambridge International AS and A Level Computing 9691	Paper 21 Q1(a) (b) & (c)	June 2012	Section 2 Page 127
Cambridge International AS and A Level Computing 9691	Paper 21 Q2	November 2011	Section 2 Page 130
Cambridge International AS and A Level Computing 9691	Paper 23 Q4	June 2011	Section 2 Page 130
Cambridge International AS and A Level Computing 9691	Paper 22 Q2	November 2011	Section 2 Page 132
Cambridge International AS and A Level Computing 9691	Paper 23 Q3(a) (c) (d) (e) & (f)	November 2011	Section 2 Page 133
Cambridge International AS and A Level Computing 9691	Specimen Paper 2 Q3		Section 2 Page 135
Cambridge International AS and A Level Computing 9691	Paper 21 Q3	June 2012	Section 2 Page 136

Acknowledgement xiii

Syllabus Name and Code	Paper and Question Number	Month/Year	Chapter/Page in Book
Cambridge International AS and A Level Computing 9691	Paper 31 Q1	November 2011	Chapter 17 Page 144
Cambridge International AS and A Level Computing 9691	Paper 31 Q5	June 2011	Chapter 17 Page 144
Cambridge International AS and A Level Computing 9691	Paper 33 Q8	November 2011	Chapter 17 Page 144
Cambridge International AS and A Level Computing 9691	Specimen Paper 3 Q3(a) & (b)		Chapter 18 Page 152
Cambridge International AS and A Level Computing 9691	Paper 31 Q4	November 2010	Chapter 18 Page 153
Cambridge International AS and A Level Computing 9691	Paper 33 Q2(a)	June 2011	Chapter 18 Page 153
Cambridge International AS and A Level Computing 9691	Paper 31 Q9	November 2011	Chapter 18 Page 153
Cambridge International AS and A Level Computing 9691	Paper 32 Q11(b)	June 2011	Chapter 19 Page 157
Cambridge International AS and A Level Computing 9691	Paper 32 Q3(b) (i) & (ii)	November 2010	Chapter 19 Page 158
Cambridge International AS and A Level Computing 9691	Paper 31 Q2	November 2011	Chapter 19 Page 158
Cambridge International AS and A Level Computing 9691	Specimen Paper 3 Q5		Chapter 20 Page 176
Cambridge International AS and A Level Computing 9691	Paper 32 Q2(a) (b) & (c)	June 2012	Chapter 20 Page 177
Cambridge International AS and A Level Computing 9691	Paper 31 Q7	June 2011	Chapter 20 Page 177
Cambridge International AS and A Level Computing 9691	Paper 33 Q3	November 2011	Chapter 20 Page 178
Cambridge International AS and A Level Computing 9691	Specimen Paper 3 Q4		Chapter 21 Page 194
Cambridge International AS and A Level Computing 9691	Paper 32 Q8	November 2011	Chapter 21 Page 195
Cambridge International AS and A Level Computing 9691	Specimen Paper 3 Q8(a)		Chapter 21 Page 195
Cambridge International AS and A Level Computing 9691	Specimen Paper 3 Q2		Chapter 22 Page 207
Cambridge International AS and A Level Computing 9691	Paper 31 Q8	November 2009	Chapter 22 Page 207
Cambridge International AS and A Level Computing 9691	Paper 31 Q4	June 2011	Chapter 23 Page 213
Cambridge International AS and A Level Computing 9691	Paper 33 Q5	November 2011	Chapter 23 Page 213
Cambridge International AS and A Level Computing 9691	Specimen Paper 3 Q9		Chapter 24 Page 221
Cambridge International AS and A Level Computing 9691	Paper 31 Q12	June 2011	Chapter 24 Page 221
Cambridge International AS and A Level Computing 9691	Paper 31 Q4	November 2011	Chapter 24 Page 221