A geyser of hot gas, known as Herbig-Haro 110, from a newborn star ricochets from the core of a cloud of hydrogen molecules; a combination of images taken with the Hubble Space Telescope.
THE COSMOS
Fourth Edition

An exciting introduction to astronomy, the fourth edition of this book uses recent discoveries and stunning photography to inspire non-science majors about the Universe and science. Written by two highly experienced and engaging instructors, each chapter has been fully updated, with more than 200 new images throughout, including recent images from space missions and the world's best observatories. Redesigned, streamlined pages highlight the breathtaking imagery.

The text is organized as a series of stories, each presenting the history of the field, the observations made and how they fit within the process of science, our current understanding, and what future observations are planned. Math is provided in boxes and easily read around, making the book suitable for courses taking either mathematical or qualitative approaches. New discussion questions encourage students to think widely about astronomy and the role science plays in our everyday lives, and podcasts for each chapter aid studying and comprehension. Tables, Appendices, Selected Readings, and the Glossary have all been updated.

Jay M. Pasachoff is Field Memorial Professor of Astronomy at Williams College, where he teaches the astronomy survey course and works with undergraduate students on a variety of astronomical research projects. He is also Director of the Hopkins Observatory there. He received his undergraduate and graduate degrees from Harvard and was at the California Institute of Technology, where he has also had recent sabbatical leaves, before going to Williams College.

Pasachoff pioneered the emphasis in textbooks on contemporary astronomy alongside the traditional bases. He has taken advantage of his broad experience with a wide variety of ground-based telescopes and spacecraft in writing his texts. Also, "For his eloquent and informative writing of textbooks..., For his devotion to teaching generations of students, For sharing with the world the joys of observing eclipses, For his many popular books and articles on astronomy, For his intense advocacy on behalf of science education in various forums, For his willingness to go into educational nooks where no astronomer has gone before," he received the American Astronomical Society’s 2003 Education Prize.

Pasachoff's expedition with students to the 2012 total solar eclipse was his 56th solar eclipse. He has also been carrying out research on transits of Venus and of Mercury. His research has recently been sponsored by the National Science Foundation, NASA, and the National Geographic Society. He is Chair of the Working Group on Eclipses of the solar division of the International Astronomical Union and Chair of the American Astronomical Society's Historical Astronomy Division. He is collaborating with colleagues to observe occultations of stars by Pluto, its largest moon (Charon), and other objects in the outer parts of the Solar System. He also works in radio astronomy of the solar atmosphere and of the interstellar medium, concentrating on deuterium and its cosmological consequences.

Pasachoff has been President of the Commission on Education and Development of the International Astronomical Union and twice Chair of the Astronomy Division of the American Association for the Advancement of Science. He is co-editor of Teaching and Learning Astronomy: Effective Strategies for Educators Worldwide (2005) and of Innovation in Astronomy Education (2008). Asteroid (5100) Pasachoff is named for him.

Alex Filippenko is a Professor of Astronomy and the Richard & Rhoda Goldman Distinguished Professor in the Physical Sciences at the University of California, Berkeley. His teaching of an astronomy survey course is very popular on campus; he has won the most coveted teaching awards at Berkeley and has nine times been voted “Best Professor” on campus. In 2006, he was named the U.S. National Professor of the Year. In 2010, he won the Emmons Award of the Astronomical Society of the Pacific for excellence in college astronomy teaching. He received his undergraduate degree from the University of California, Santa Barbara, and his doctorate from the California Institute of Technology.

Filippenko has produced five video courses on college-level astronomy through The Great Courses. The recipient of the 2004 Carl Sagan Prize for Science Popularization, he lectures widely, and has appeared frequently on science newscasts and television documentaries, especially The Universe series on The History Channel and H2 (about 40 episodes spanning 6 seasons).

Filippenko's primary areas of observational research are exploding stars (supernovae), gamma-ray bursts, active galaxies, black holes, and observational cosmology; he frequently uses the Hubble Space Telescope, the Keck 10-meter telescopes, and other facilities. He and his collaborators have obtained some of the best evidence for the existence of stellar-mass black holes in our Milky Way Galaxy. His robotic telescope at Lick Observatory, together with a large team that includes many undergraduate students, is conducting one of the world’s most successful searches for exploding stars in relatively nearby galaxies, having found more than 1,000 of them. He made major contributions to both of the teams that discovered the accelerating expansion of the Universe, and the team leaders received the 2011 Nobel Prize in Physics for their work.

One of the world's most highly cited astronomers, his research has been recognized with several prestigious awards, including election to the U.S. National Academy of Sciences.

He has served as a Councilor of the American Astronomical Society and has been Vice President and President of the Astronomical Society of the Pacific. He is an active member of the International Astronomical Union.
“This is an extraordinarily attractive, captivating, and easy-to-follow textbook of modern astronomy. I will happily continue to use it in teaching my course.”
Professor Alex Wolszczan, Penn State University

“… the work of two great astronomers and top teachers … clear and concise. This is the text I would use for my introductory astronomy course.”
Professor Arun Venkatachar, Ohio University

“The authors convey a clear and enthusiastic pedagogic presentation of an exciting field. As a textbook, it will be of great benefit to students, providing a valuable starting point to learn about the subject … The Cosmos stands out for its continued excellence over time.”
Dr. Roger Kadala, Hawaii Pacific University

“… long considered one of the best descriptive astronomy books, the new Fourth Edition is even better … not only a beautifully illustrated text, but has many of the latest developments in astronomy.”
Professor Victor Kriss, Lewis-Clark State College

“… my first choice for a textbook for introductory astronomy. Hundreds of students in my introductory astronomy class have used The Cosmos as the primary text, and I am very happy with the coverage and presentation of the material.”
Professor Steinn Sigurðsson, Penn State University

“… a splendid new addition to The Cosmos series, distinguished by its crisp, interesting, and informative style and made all the more accessible through the generous use of photographs, charts, and diagrams that greatly facilitate one’s understanding.”
Mark Rader, Notre Dame High School
THE COSMOS

Astronomy in the New Millennium

Fourth Edition

Jay M. Pasachoff
Williams College, Massachusetts

Alex Filippenko
University of California, Berkeley
BRIEF CONTENTS

Preface xix
1 A Grand Tour of the Heavens 1
2 Light, Matter, and Energy: Powering the Universe 21
3 Light and Telescopes: Extending Our Senses 37
4 Observing the Stars and Planets: Clockwork of the Universe 67
5 Gravitation and Motion: The Early History of Astronomy 95
6 The Terrestrial Planets: Earth, Moon, and Their Relatives 119
7 The Jovian Planets: Windswept Giants 167
8 Pluto, Comets, and Space Debris 197
9 Our Solar System and Others 233
10 Our Star: The Sun 255
11 Stars: Distant Suns 279
12 How the Stars Shine: Cosmic Furnaces 311
13 The Death of Stars: Recycling 331
14 Black Holes: The End of Space and Time 361
15 The Milky Way: Our Home in the Universe 383
16 A Universe of Galaxies 413
17 Quasars and Active Galaxies 451
18 Cosmology: The Birth and Life of the Cosmos 477
19 In the Beginning 509
20 Life in the Universe 541
Epilogue 559
Appendix 1. Measurement Systems 561
Appendix 2. Basic Constants 561
Appendix 3. Planets and Dwarf Planets 562
Appendix 4. The Brightest Stars 564
Appendix 5. The Nearest Stars 566
Appendix 6. The Messier Catalogue 568
Appendix 7. The Constellations 570
Selected Readings 571
Glossary 575
Index 585
CONTENTS

1.4 How Do You Take a Tape Measure to the Stars? 10
1.5 The Value of Astronomy 11
 The Grandest Laboratory of All 11
 Origins 11
 A Closer Look 1.1: A Sense of Scale: Measuring Distances 12
1.6 What Is Science? 15
1.7 Why Is Science Far Better Than Pseudoscience? 16

2 LIGHT, MATTER, AND ENERGY: POWERING THE UNIVERSE 21

2.1 Studying a Star Is Like Looking at a Rainbow 22
2.2 "Blackbodies" and Their Radiation 22
 Figure It Out 2.1: The Nature of Light 23
 Figure It Out 2.2: Blackbody Radiation and Wien’s Law 24
 Figure It Out 2.3: Blackbody Radiation and the Stefan-Boltzmann Law 25
2.3 What Are Those Missing Colors and Where Are They? 25
2.4 The Story Behind the Bohr Atom 27
2.5 The Doppler Effect and Motion 30
 Figure It Out 2.4: Temperature Conversions 31

3 LIGHT AND TELESCOPES: EXTENDING OUR SENSES 37
3.1 The First Telescopes for Astronomy 37
3.2 How Do Telescopes Work? 39
3.3 Modern Telescopes 41
 Figure It Out 3.1: Light-Gathering Power of a Telescope 42
 Current Large Telescopes Around the World 42
 Figure It Out 3.2: Changing Units 45
 The Next Generation of Optical and Infrared
 Ground-Based Telescopes 45
3.4 The Big Picture: Mapping the Sky 46
3.5 Amateurs Are Participating 48
3.6 Glorious Hubble After Initial Trouble 49
3.7 You Can’t Look at the Sun at Night 51
3.8 How Can You See the Invisible? 52
 X-ray and Gamma-ray Telescopes 52
 Telescopes for Ultraviolet Wavelengths 54
 Infrared Telescopes 55
 Radio Telescopes 55
 The Major New Radio Projects 56
 Figure It Out 3.3: Angular Resolution of a Telescope 57
 A Closer Look 3.1: A Night at Mauna Kea 59

4 OBSERVING THE STARS AND PLANETS: CLOCKWORK OF THE UNIVERSE 67
4.1 The Phases of the Moon and Planets 68
4.2 Celestial Spectacles: Eclipses 70
 Star Party 4.1: Observing Total Solar Eclipses 72

5 GRAVITATION AND MOTION: THE EARLY HISTORY OF ASTRONOMY 95
5.1 A Brief Survey of the Solar System 95
THE TERRESTRIAL PLANETS: EARTH, MOON, AND THEIR RELATIVES 119

6.1 Earth: There’s No Place Like Home 120
 A Closer Look 6.1: Comparative Data for the Terrestrial Planets and Their Moons 120
 The Earth’s Interior 121
 A Closer Look 6.2: Density 122
 Continental Drift 122
 Tides 124
 The Earth’s Atmosphere 124
 The Van Allen Belts 127

6.2 The Moon 127
 The Moon’s Appearance 127
 The Lunar Surface 130
 A Closer Look 6.3: The First People on the Moon 130
 The Lunar Interior 135
 The Origin of the Moon 135
 Rocks from the Moon 136

6.3 Mercury 137
 The Rotation of Mercury 137
Mercury's History 138
A Closer Look 6.4: Naming the Features of Mercury 139
Mercury Observed from the Earth 139
Spacecraft Views of Mercury 139
Mercury Research Rejuvenated 141
Mercury from MESSENGER 141
Continuing Exploration of Mercury 143

6.4 Venus 143
Transits of Venus 143
The Atmosphere of Venus 144
The Rotation of Venus 144
Why Is Venus So Incredibly Hot? 145
Spacecraft Observations of Venus’s Atmosphere 146
Radar Observations of Venus’s Surface 147
Venus Exploration in the 21st Century 149

6.5 Mars 149
 Characteristics of Mars 150
 Mars’s Surface 151
 Mars’s Atmosphere 152
 A Closer Look 6.5: Mars Exploration Rovers, Mars Phoenix, and Mars Science Lab’s Rover Curiosity 155
 Mars’s Satellites 157
 The Search for Life on Mars 157
 Crewed Missions to Mars 160

7 THE JOVIAN PLANETS: WINDSWEPT GIANTS 167

7.1 Jupiter 168
A Closer Look 7.1: Comparative Data for the Major Worlds 168
Star Party 7.1: Observing the Giant Planets 169
Spacecraft to Jupiter 169
Figure It Out 7.1: The Size of Jupiter 169
The Great Red Spot 170
Jupiter’s Atmosphere 170
Jupiter’s Interior 172
Jupiter’s Magnetic Field 172
Jupiter’s Ring 173
Jupiter’s Amazing Satellites 173
A Closer Look 7.2: Jupiter and Its Satellites in Mythology 176

7.2 Saturn 177
Saturn’s Rings 177
Saturn’s Atmosphere 179
Saturn’s Interior and Magnetic Field 179
Saturn’s Moon Titan 181
A Closer Look 7.3: Saturn’s Satellites in Mythology 181
A Closer Look 7.4: Saturn’s Rings and Moons from Cassini 183
PLUTO, COMETS, AND SPACE DEBRIS 197

8.1 Pluto 198
 Pluto’s Mass and Size 198
 Pluto’s Atmosphere 200
 What Is Pluto? 201

8.2 Kuiper-Belt Objects and Dwarf Planets 202
 A Closer Look 8.1: Dwarf Planets 202

8.3 Comets 204
 The Composition of Comets 205
 The Origin and Evolution of Comets 206
 Halley’s Comet 207
 Comet Shoemaker-Levy 9 209
 Recently Observed Comets 210
 Spacecraft to Comets 210
 A Closer Look 8.2: Deep Impact 214

8.4 Meteoroids 215
 Types and Sizes of Meteorites 215
 A Closer Look 8.3: February 15, 2013 – An Exploding Meteor, A Nearby Asteroid 216
 Meteor Showers 218
 A Closer Look 8.4: Meteor Showers 218

8.5 Asteroids 219
 General Properties of Asteroids 219
 Star Party 8.1: Observing a Meteor Shower 220
 A Closer Look 8.5: The Extinction of the Dinosaurs 220
 Asteroids Viewed Close Up 222
 Near-Earth Objects 223
 A Closer Look 8.6: Images from Curiosity on Mars 231

OUR SOLAR SYSTEM AND OTHERS 233

9.1 The Formation of the Solar System 234
 Collapse of a Cloud 234
 Models of Planet Formation 235

9.2 Extra-solar Planets (Exoplanets) 236
10.3 The Sun and the Theory of Relativity 270
 Lives in Science 10.1: Albert Einstein 271
 A Closer Look 10.2: Solar Eclipses of 2013 277

11 STARS: DISTANT SUNS 279

11.1 Colors, Temperatures, and Spectra of Stars 280
 Taking a Star’s Temperature 280
 How Do We Classify Stars? 281
 The Coolest Stars 282

11.2 How Distant Are the Stars? 282
 Figure It Out 11.1: Stellar Triangulation 284

11.3 How Powerful Are the Stars? 285
 Figure It Out 11.2: The Inverse-Square Law 286
 A Closer Look 11.1: Using Absolute Magnitudes 286
 A Closer Look 11.2: Proxima Centauri: The Nearest Star 286

11.4 Temperature-Luminosity Diagrams 287
 Figure It Out 11.3: A Star’s Luminosity 289
 A Closer Look 11.2: Proxima Centauri: The Nearest Star 289

11.5 How Do Stars Move? 290
 Proper Motions of Stars 290
 Radial Velocities of Stars 290

11.6 “Social Stars”: Binaries 292
 Pairs of Stars and Their Uses 292
12

HOW THE STARS SHINE: COSMIC FURNACES 311

12.1 Starbirth 312
Collapse of a Cloud 312
The Birth Cries of Stars 314

12.2 Where Stars Get Their Energy 317

12.3 Atoms and Nuclei 317

Figure It Out 12.1: Energy Generation in the Sun 318
Subatomic Particles 318

12.4 Stars Shining Brightly 320

12.5 Why Stars Shine 320

12.6 Brown Dwarfs 320

12.7 The Solar-Neutrino Experiment 322
Initial Measurements 322
Further Solar-Neutrino Experiments 323
Beyond Solar Neutrinos 324

12.8 The End States of Stars 325

13

THE DEATH OF STARS: RECYCLING 331

13.1 The Death of the Sun 332
Red Giants 332
Planetary Nebulae 333
White Dwarfs 334
Summary of the Sun’s Evolution 336
Binary Stars and Novae 336

13.2 Supernovae: Stellar Fireworks! 337
Core-Collapse Supernovae 338
White-Dwarf Supernovae (Type Ia) 339
Observing Supernovae 341
Supernova Remnants 343
Supernovae and Us 343
Supernova 1987A! 344

A Closer Look 13.1: Searching for Supernovae 344
Cosmic Rays 348

13.3 Pulsars: Stellar Beacons 349
Neutron Stars 349
The Discovery of Pulsars 349
What Are Pulsars? 350
The Crab, Pulsars, and Supernovae 351
Slowing Pulsars and Fast Pulsars 352
Binary Pulsars and Gravitational Waves 352
A Pulsar with a Planet 355
X-ray Binaries 355

Isotopes 318
Radioactivity and Neutrinos 319

11.7 Stars That Don’t Shine Steadily 298

11.8 Clusters of Stars 300
Open and Globular Star Clusters 300
A Closer Look 11.4: Star Clusters in Our Galaxy 302
How Old Are Star Clusters? 303

A Closer Look 11.5: How We Measure Basic Stellar Parameters 305
Contents

15.7 Our Pinwheel Galaxy 397
15.8 Why Does Our Galaxy Have Spiral Arms? 397
15.9 Matter Between the Stars 399
15.10 Radio Observations of Our Galaxy 400
15.11 Mapping Our Galaxy 401
15.12 Radio Spectral Lines from Molecules 403
15.13 The Formation of Stars 403
15.14 At a Radio Observatory 406

16.1 The Discovery of Galaxies 414
The Shapley-Curtis Debate 414
Galaxies: “Island Universes” 416
16.2 Types of Galaxies 417
Spiral Galaxies 417
Elliptical Galaxies 420
Other Galaxy Types 421
16.3 Habitats of Galaxies 421
Clusters of Galaxies 422
Superclusters of Galaxies 424
Star Party 16.1: Observing Galaxies 425
16.4 The Dark Side of Matter 428
The Rotation Curve of the Milky Way Galaxy 428
Dark Matter Everywhere 428

NGC 3314, a chance alignment of two distant galaxies, imaged with the Hubble Space Telescope. The galaxies are actually separated by a distance ten times that of our galaxy from the Andromeda galaxy and are about 140 million light-years from us.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5</td>
<td>Gravitational Lensing</td>
<td>430</td>
</tr>
<tr>
<td>16.6</td>
<td>The Birth and Life of Galaxies</td>
<td>433</td>
</tr>
<tr>
<td>16.7</td>
<td>The Expanding Universe</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 16.2: Redshifts and Hubble’s Law</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 16.3: Using Hubble’s Law to Determine Distances</td>
<td>436</td>
</tr>
<tr>
<td>16.8</td>
<td>The Search for the Most Distant Galaxies</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 16.4: Relativistic Effects</td>
<td>437</td>
</tr>
<tr>
<td>16.9</td>
<td>The Evolution of Galaxies</td>
<td>440</td>
</tr>
<tr>
<td>16.10</td>
<td>Evolution of Large-Scale Structure</td>
<td>443</td>
</tr>
<tr>
<td>17</td>
<td>Quasars and Active Galaxies</td>
<td>451</td>
</tr>
<tr>
<td>17.1</td>
<td>Active Galactic Nuclei</td>
<td>452</td>
</tr>
<tr>
<td>17.2</td>
<td>Quasars: Denizens of the Distant Past</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>The Discovery of Quasars</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>Puzzling Spectra</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>The Nature of the Redshift</td>
<td>456</td>
</tr>
<tr>
<td>17.3</td>
<td>How Are Quasars Powered?</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>A Big Punch from a Tiny Volume</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>What Is the Energy Source?</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>Accretion Disks and Jets</td>
<td>459</td>
</tr>
<tr>
<td>17.4</td>
<td>What Are Quasars?</td>
<td>460</td>
</tr>
<tr>
<td>17.5</td>
<td>Are We Being Fooled?</td>
<td>462</td>
</tr>
<tr>
<td>17.6</td>
<td>Finding Supermassive Black Holes</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 17.1: The Central Mass in a Galaxy</td>
<td>465</td>
</tr>
<tr>
<td>17.7</td>
<td>The Effects of Beaming</td>
<td>467</td>
</tr>
<tr>
<td>17.8</td>
<td>Probes of the Universe</td>
<td>470</td>
</tr>
<tr>
<td>18</td>
<td>Cosmology: The Birth and Life of the Cosmos</td>
<td>477</td>
</tr>
<tr>
<td>18.1</td>
<td>Olbers’s Paradox</td>
<td>478</td>
</tr>
<tr>
<td>18.2</td>
<td>An Expanding Universe</td>
<td>479</td>
</tr>
</tbody>
</table>
19

IN THE BEGINNING 509

19.1 The Steady-State Theory 510
19.2 The Cosmic Microwave Radiation 511
 A Faint Hiss from All Directions 511
 Origin of the Microwave Radiation 512
19.3 Deviations from Isotropy 513
 Ripples in the Cosmic Microwave Background 513
 The Overall Geometry of the Universe 515
 The Wilkinson Microwave Anisotropy Probe (WMAP) 516
 A Closer Look 19.1: Planck Maps the Cosmic Background
 Radiation 518
 Ground-Based Telescopes for the Cosmic Background
 Radiation 521
 The Planck Spacecraft 521
19.4 The Early Universe 522
 Going Back in Time 522
 A Brief History of the Early Universe 522
 Primordial Nucleosynthesis 525
19.5 The Inflationary Universe 526
 Problems with the Original Big-Bang Model 526
 Inflation to the Rescue 527
 Forces in the Universe 528
 Figure It Out 19.1: Inflation of the Early Universe 529
 Supercooling the Universe 531

20

LIFE IN THE UNIVERSE 541

20.1 The Origin of Life 543
20.2 Life in the Solar System 544
20.3 Suitable Stars for Intelligent Life 544
20.4 The Search for Extraterrestrial Intelligence 545
 Figure It Out 20.1: Interstellar Travel and Einstein’s
 Relativity 546
20.5 Communicating with Extraterrestrials 549
20.6 The Statistics of Intelligent Extraterrestrial
 Life 550
 The Drake Equation 550
 Where Is Everyone? 551
 Figure It Out 20.2: The Drake Equation 553
20.7 UFOs and the Scientific Method 553
 UFOs 554
 Of Truth and Theories 554
20.8 Conclusion 555

Epilogue 559
Appendix 1. Measurement Systems 561
Appendix 2. Basic Constants 561
Appendix 3. Planets and Dwarf Planets 562
Appendix 4. The Brightest Stars 564
Appendix 5. The Nearest Stars 566
Appendix 6. The Messier Catalogue 568
Appendix 7. The Constellations 570
Selected Readings 571
Glossary 575
Index 585
Astronomy continues to flourish, with huge discoveries such as the one that the Universe's expansion – which was long thought to be slowing down – is, astonishingly, accelerating. A generation of large optical telescopes has been built on mountaintops, and arrays of dozens of radio telescopes explore their part of the spectrum at high resolution. Still larger telescopes are being planned or built, including the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope, all for optical and near-infrared studies, as well as the Atacama Large Millimeter/submillimeter Array at an extremely high-altitude site for radio and far-infrared studies. The Hubble Space Telescope, updated with new cameras, sends down exciting data all the time, though we worry about its future and about a gap before the James Webb Space Telescope is launched. The latest space observatories transmit images made with gamma rays, with x-rays, and with infrared radiation. The overall structure of the Universe is being mapped and analyzed, with catalogues of millions of objects being compiled. Cosmology has become a mathematical, and even a statistical, science. NASA's Curiosity rover triumphantly landed on Mars, bearing instruments to investigate Mars's past habitability. Spacecraft are orbiting Mercury and Saturn; other spacecraft are en route to orbit Ceres and a comet. Another spacecraft is en route to Pluto and to objects beyond it. Moreover, new electronic instruments and computer capabilities, new space missions to Solar-System objects, and advances in computational astronomy and in theoretical work will continue to bring forth exciting results.

In *The Cosmos: Astronomy in the New Millennium*, we describe the current state of astronomy, both the fundamentals of astronomical knowledge that have been built up over decades and the incredible advances that are now taking place. We want simply to share with you the excitement and magnificence of the Universe.

We try to cover all branches of astronomy without slighting any of them; each teacher and each student may well find special interests that are different from our own. One of our aims in writing this book is to educate citizens in the hope that they will understand the value and methods of scientific research in general and astronomical research in particular.

In writing this book, we share the goals of a commission of the Association of American Colleges, whose report on the college curriculum stated, “A person who understands what science is recognizes that scientific concepts are created by acts of human intelligence and imagination; comprehends the distinction between observation and inference and between the occasional role of accidental discovery in scientific investigation and the deliberate strategy of forming and testing hypotheses; understands how theories are formed, tested, validated, and accorded provisional acceptance; and discriminates between conclusions that rest on unverified assertion and those that are developed from the application of scientific reasoning.” The scientific method permeates the book.

What is science? The following statement was originally drafted by the Panel on Public Affairs of the American Physical Society, in an attempt to meet the perceived need for a very short statement that would differentiate science from pseudoscience. This statement has been endorsed as a proposal to other scientific societies by the Council of the American Physical Society and was endorsed by the Executive Board of the American Association of Physics Teachers:

Science is the systematic enterprise of gathering knowledge about the world and organizing and condensing that knowledge into testable laws and theories. The success and credibility of science is anchored in the willingness of scientists to:
Preface

Expose their ideas and results to independent testing and replication by other scientists; this requires the complete and open exchange of data, procedures, and materials;
Abandon or modify accepted conclusions when confronted with more complete or reliable experimental evidence. Adherence to these principles provides a mechanism for self-correction that is the foundation of the credibility of science.

Our book, through the methods it describes, should reveal this systematic enterprise of science to the readers.
Because one cannot adequately cover the whole Universe in a few months, or even a year, we have had to pick and choose topics from within the various branches of astronomy, while trying to describe a wide range, to convey the spirit of contemporary astronomy and of the scientists working in it. Our mix includes much basic astronomy and many of the exciting topics now at the forefront.

Organization

The Cosmos: Astronomy in the New Millennium is generally organized in an Earth-outward approach. Chapter 1 gives an overview of the Universe. Chapter 2 presents fundamental astronomical concepts about light, matter, and energy, while Chapter 3 summarizes the various types of telescopes used to explore the electromagnetic spectrum. In Chapter 4, we discuss easily observed astronomical phenomena and the celestial sphere. Some professors prefer to cover that material at the very beginning of the course or at other points, and there is no problem with doing so.

Chapter 5 examines the early history of the study of astronomy. Chapters 6 through 8 cover the Solar System and its occupants, although a thorough discussion of the Sun is reserved for later, in Chapter 10. Chapter 6 compares Earth to the Moon and Earth’s nearest planetary neighbors, Venus and Mars. Based largely on the Voyager, Galileo, and Cassini data, Chapter 7 compares and contrasts the Jovian gas/liquid giants – Jupiter, Saturn, Uranus, and Neptune.

Chapter 8 looks at the outermost part of the Solar System, including Pluto and its moon, Charon, as well as other Kuiper-belt objects still farther out; the chapter also spotlights comets and meteoroids, the Solar System’s vagabonds. Chapter 9 discusses the formation of our own Solar System and describes the exciting discovery of thousands of exoplanet candidates around other stars.

Chapter 10 concentrates on the Sun, our nearest star, exploring its various components and the solar activity cycle. Moving outward, Chapters 11 through 14 examine all aspects of stars. Chapter 11 begins by presenting observational traits of stars – their colors and types – and goes on to show how we measure their distances, brightnesses, and motions. It also discusses binary stars, variable stars, and star clusters, in the process showing how we derive stellar masses and ages. Chapter 12 answers the question of how stars shine and reveals that all stars have life cycles. Chapter 13 tells what happens when stars die and describes some of the peculiar objects that violent stellar death can create, including neutron stars and pulsars. Black holes, the most bizarre objects to result from star death, are the focus of Chapter 14.

As we explore further, Chapter 15 describes the parts of the Milky Way Galaxy and our place in it. Chapter 16 pushes beyond the Milky Way to discuss galaxies in general, the fundamental units of the Universe, and evidence that they consist largely of dark matter. Ways in which we are studying the evolution of galaxies are also described. Chapter 17 looks at quasars, distant and powerful objects that are probably gigantic black holes swallowing gas in the central regions of galaxies.

Chapters 18 and 19 consider the ultimate questions of cosmological creation by analyzing recent findings and current theories. Evidence that the expansion of the Universe is currently speeding up with time (probably propelled by a mysterious “dark energy”), possibilities for the overall geometry and fate of the Universe, ripples in the cosmic background radiation, the origin and phenomenally rapid early growth of the Universe, and the idea of multiple universes are among the fascinating (and sometimes very speculative) topics explored. Lastly, Chapter 20 discusses the always-intriguing search for extraterrestrial intelligence.

Features

The Cosmos: Astronomy in the New Millennium offers instructors a relatively short text with concise coverage over a wide range of astronomical topics. An early discussion of the scientific method stresses its importance in the verification of observations. The text presents up-to-date coverage of many important findings and theories as well as the latest images, including observations of Jupiter and Saturn from the Cassini-Huygens mission (including the landing on Titan), close-up observations of Mars, infrared images of stars in formation and of gas near them from the largest telescope in space, and coverage of recent total solar eclipses and of the pair of transits of Venus – the like of which will not be seen on Earth until the year 2117, in the 22nd century.
PEDAGOGY

Within the book (or, in one case, on its website) we have five kinds of features:

1. Star Parties. An occasional feature that shows students how to find things in the sky. These include observing exercises and links to the star maps that appear on the inside covers of the book.

2. Figure It Out. In some astronomy courses, it may be appropriate to elaborate on equations. Because we wrote *The Cosmos: Astronomy in the New Millennium* to be a descriptive presentation of modern astronomy for liberal-arts students, we kept the use of mathematics to a minimum. However, we recognize that some instructors wish to introduce their students to more of the mathematics associated with astronomical phenomena. Consequently, we provide mathematical features, numbered so they can be assigned or not, at the instructor’s option.

3. Lives in Science. These boxes provide biographies of important historical figures like Copernicus and Galileo.

4. A Closer Look. Using these boxes, students can further explore interesting topics, such as size scales in the Universe, observing with large telescopes, various celestial phenomena, mythology, and naming systems. We are pleased to supply some exciting close-ups of Mars, Titan, and a comet, for example.

5. People in Astronomy. Each of these interviews (available on the website) presents a notable contemporary astronomer engaged in conversation about a variety of topics: current and future work in astronomy, what led that person to study and pursue astronomy as a career, and why learning about astronomy is an important scientific and human endeavor. We hope that you enjoy reading their comments as much as we enjoyed speaking with them and learning about their varied interests and backgrounds.

We have provided aids to make the book easy to read and to study from. New vocabulary is boldfaced in the text and in the expanded summaries that are given in context at the end of each chapter, and defined in the glossary. The index provides further aid in finding explanations. An expanded set of end-of-chapter questions covers a range of material and includes some that are straightforward to answer from the text and others that require more thought. Appendices provide some information on planets, stars, constellations, and nonstellar objects. The exceptionally beautiful sky maps by Wil Tirion (inside the covers of the book) will help you find your way around the sky when you go outside to observe the stars. Be sure you do.

THE COSMOS WEBSITE

Adopters of *The Cosmos*, 4th edition, have access to a rich array of teaching and learning resources at the book’s web page. Students will find multiple-choice self-tests and other useful information.

Recent educational research has shown that students often need to unlearn incorrect ideas in order to understand the correct ones. We

COSMIC ORIGINS

The study of our origins, whether it be ourselves as humans, our Earth as a planet, our Sun as a star, or our Galaxy as a whole, is as interesting to many of us as it is to look at our own baby pictures. Most of us have gazed at the stars and wondered how they came to be and what their relationship to us is. NASA Astrophysics has chosen Cosmic Origins as one of its major themes for the organization of its missions and has several spacecraft planned in the Cosmic Origins program. We emphasize the study of origins in this text, dealing with a variety of relevant material. NASA Astrophysics also has two additional themes, which we also cover extensively in this text: Physics of the Cosmos and Exoplanet Exploration.
have thus placed a list of such “Misconceptions,” including common incorrect ideas and the correct alternatives, on the book’s website. The book’s website also has a list of many relevant URLs from the World Wide Web.

The website is updated occasionally with links to information and photographs from a wide variety of sources. Updates also appear at this book’s other website at http://www.thecosmos4.com. Each professor and each student should look at these updates and links, which are organized in chapter order.

STAR CHARTS

ACKNOWLEDGMENTS

The publishers join us in placing a heavy premium on accuracy, and we have made certain that the manuscript and past editions have been carefully read and considered. As a result, you will find that the statements in this book, brief as they are, are authoritative.

This fourth edition of The Cosmos benefitted from the advice and special images provided by Geoff Marcy (University of California, Berkeley), Lynn Cominsky (Sonoma State University), Leon Golub (Harvard-Smithsonian Center for Astrophysics), Joel Weisberg (Carleton College), Daniel Seaton (Royal Observatory of Belgium), John Johnson (Caltech), Robert Simmon (NASA’s Goddard Space Flight Center), Richard McCray (University of Colorado), Richard Manchester (CSIRO, Australia), Daniel Stern (JPL), Daniel Mortlock (Imperial College, London), Matthew Templeton, Sarah Beck, and Arne Henden (AAVSO), Stefan Fichtel (Ixtract), Augustin Sanchez Lavega (Valencia), Federica Bianco (Las Cumbres Observatory Global Telescope Network and the University of California, Santa Barbara), Gareth Williams (Harvard-Smithsonian Center for Astrophysics), Lorne McKee (National Resources Canada), Jens Vellev (Aarhus University), Gerard van Belle (Lowell Observatory), Wayne Hammond (Chapin Library of Williams College), Richard Green (Large Binocular Telescope Observatory), Alan Marscher (Boston University), and Axel Mellinger (Central Michigan University).

For comments, corrections, and updates for this fourth edition, we also thank Katherine Stack, Caltech, Mass; Thomas Widemann, Observatoire de Paris, Venus; Imke de Pater, University of California, Berkeley, Neptune; Heidi Hammel, AURA, Uranus; Geoff Marcy, University of California, Berkeley, exoplanets; Paul Kalas, University of California, Berkeley, exoplanet imaging; Alex Wolczan, Penn State, pulsar planets; Glenn Schneider, Steward Observatory, University of Arizona, exoplanet imaging; Leon Golub, Harvard-Smithsonian CfA, Sun; Daniel B. Seaton, Royal Observatory of Belgium, Sun; Edw. Ginsberg, UMass, Boston, general and the end-of-chapter questions; Michael Blanton, NYU, Sloan Digital Sky Survey; Gerard Williger, University of Louisville, general; Art McDonald, Sudbury Neutrino Observatory, solar neutrinos; Huajie Cao, Princeton, dark-matter experiments; Caty Pilachowski, University of Indiana, globular clusters; Howard Bond, Space Telescope Science Institute, planetary nebulae; Karen Kwitter, Williams College, planetary nebulae; J. J. Hermes and Don Winget, University of Texas, relativistic white-dwarf systems; Laura Brenneman, Harvard-Smithsonian CfA, black holes; Holland Ford, STScI, supermassive black holes; Roeland van der Marel, STScI, supermassive black holes; Seth Shostak, SETI Institute, current SETI; Heather Knutson, Caltech, habitable zones for exoplanets; and Lynn Cominsky, Sonoma State, gamma-ray bursts.

For expert work in the revision and updating of the planetary chapters, we thank Deborah Pasachoff in Pasadena. For her extensive editorial consulting, we thank Madeline Kennedy in Williamstown. For additional assistance, we thank Michele Rech in Williamstown.

At Cambridge University Press, we thank our editor, Vince Higgs, and his assistant, Louis Gulino; James Dunn, Helen Wheeler, Kerry Cahill, and Danielle Poupore in New York; and Catherine Flack and her team in the U.K.
J.M.P. thanks various members of his family, who have provided vital and valuable editorial services in addition to their general support. His wife, Naomi, has always been very helpful both personally and editorially. He is grateful for the family support of Deborah Pasachoff/Ian Kezsbom/Lily Kezsbom/Jacob Kezsbom and of Eloise Pasachoff/Tom Glaisyer/Samuel Glaisyer/Jessica Glaisyer.

A.F. thanks his children, Zoe, Simon, Caprielle, and Orion Filippenko, for the long hours they endured while he was busy working on this book rather than playing with them; they mean the Universe to him. A.F. also thanks his wife, Noelle Filippenko, for her incredible patience, advice, and support; he could not have succeeded without her, and he looks forward to sharing more of the wonders of the cosmos with her.

We are extremely grateful to all the individuals named above for their assistance. Of course, it is we who have put this all together, and we alone are responsible for the content. We would appreciate hearing from readers with suggestions for improved presentation of topics, with comments about specific points that need clarification, with typographical or other errors, or just to tell us how you like your astronomy course. We invite readers to write to us, respectively, at Williams College, Hopkins Observatory, 33 Lab Campus Drive, Williamstown, MA 01267–2630, eclipse@williams.edu, and Department of Astronomy, University of California, Berkeley, CA 94720–3411, alex@astro.berkeley.edu, or through the book’s websites. We promise a personal response to each writer.
A Hubble Space Telescope view of the spiral galaxy NGC 5584 with Hubble's new Wide Field Camera 3. Younger stars appear bluer and are in the spiral arms; the stars in the core are mostly older. Reddish, more distant galaxies, can be seen through the nearer galaxy, which is 72 million light years from us in the constellation Virgo. This galaxy had a Type Ia supernova, a supernova caused by the incineration of a white dwarf near its maximum mass limit. The peak apparent brightness of the supernova was measured, and its true peak power was calculated by combining this with the galaxy's distance, obtained through studies of 250 Cepheid variable stars in the galaxy. Type Ia supernovae and Cepheid variables were studied in many additional galaxies, and the calibrated supernovae were subsequently used to measure distances of large numbers of galaxies and determine the expansion rate of the Universe. This project was a main reason for the launch of the Hubble Space Telescope and for naming it after Edwin Hubble.

NASA, ESA, A. Riess (STScI/ Johns Hopkins University), L. Macri (Texas A&M University), and the Hubble Heritage Team (STScI/ AURA)