Many ideas and concepts about natural hazards have been developed in Australasia, but these are often overlooked in books written from a Northern Hemisphere perspective. *Natural Hazards in Australasia* is the first textbook that considers Australasian natural hazards, their triggering mechanisms and the physical and social environments in which they occur.

James Goff and Chris de Freitas lead an expert author team from around Australia and New Zealand to introduce readers to the natural hazards of the Australasian region, including floods, drought, tropical cyclones, volcanic and seismic hazards, tsunamis, landslides and bushfires. This book explores the interactions not only between one hazard and another, but also between humans and natural hazards.

Key pedagogical features for students include learning objectives, regional case studies, summaries, chapter glossaries, end-of-chapter reviews and discussion questions, and further reading and resources. The full colour text is enhanced by a rich array of illustrations, photographs and maps.

James Goff is Professor in the School of Biological, Earth and Environmental Sciences at UNSW Australia.

C R de Freitas is Associate Professor in the School of Environment at the University of Auckland.
CONTENTS

List of contributors x
List of figures and tables xi
List of case studies xv
Acknowledgements xvi

1 Introduction

James Goff and C R de Freitas

- Introduction 2
- What is Australasia? 2
- What is a natural hazard? 3
- Conceptual overview 3
- Scope and plan of the book 5
- References 6

2 Floods

C R de Freitas

- Learning objectives 8
- Introduction and overview 8
 - Hazard event characteristics 10
- Types of floods and their causes 10
- Measuring and monitoring floods 15
- Probabilities and frequencies 16
- Flood hazard mitigation and management 17
- Adjustments and human response 19
 - Avoidance 19
 - Protection 20
 - Regulation 21
 - Relocation 22
 - Compensation 22
 - Education 23
- Coastal inundation 23
- Hazard risk assessment and management 25
- Summary 27
- Glossary 28
- Review questions 29
- Discussion questions 29
- Further reading and other resources 29
- References 30

3 Drought

C R de Freitas

- Learning objectives 33
- Introduction and overview 34
- Characteristic dimensions of droughts 35
Contents

What is drought? 36
 Meteorological drought 36
 Agricultural drought 37
 Hydrological drought 37
 Socioeconomic drought 38
Causes of drought 38
Drought indices 40
Impacts of drought 43
 Human response to the drought hazard 44
 Water supply management 45
 Water demand management 45
 Mitigation of drought impact 45
Summary 48
Glossary 48
Review questions 48
Discussion questions 49
Further reading and other resources 49
References 49

4 Tropical cyclones 51
 C R de Freitas
Learning objectives 52
 Introduction 52
 Characteristics of tropical cyclones 53
 Tropical cyclone formation and decay 54
 Tropical cyclone intensity 55
 Monitoring and warnings 58
 Trends and links with large-scale atmospheric circulation 61
 Impacts of tropical cyclones 63
 Impact mitigation 67
 Risk analysis and future trends 68
 Summary 69
Glossary 69
Review questions 70
Discussion questions 70
Further reading and other resources 70
References 71

5 Volcanic hazards 73
 Jan Lindsay, Mary Anne Thompson and Philip Shane
Learning objectives 74
 Introduction 74
 Overview of volcanoes in Australasia 77
 Australia 80
 New Zealand 81
 Melanesia 83
 South-West Pacific 85
 Physical dimensions of volcanic hazard 87
 Likelihood of eruption 87
 Style of eruption 88
Contents

- Hazardous volcanic phenomena 89
- Hazards of the AVF 91
- Human and social dimensions of volcanic hazard 93
 - Terminology of risk 93
 - Volcanic impacts 94
 - Impact assessment in the AVF 94
- Hazard mitigation and risk reduction for volcanic hazard 94
 - Summary 97
 - Glossary 98
 - Review questions 100
 - Discussion questions 101
 - Further reading and other resources 101
 - References 101

6 Seismic hazards 104

- M C Quigley and B Duffy
- Learning objectives 105
- Introduction 105
- The origin of earthquakes 108
 - Plate tectonics, stress and rock fracturing 108
 - Earthquakes, faults, and plate tectonic settings 108
- Earthquake behaviour and triggering 113
 - Models for describing earthquake behaviour 113
 - Earthquake triggering 115
- Measurement and characterisation of earthquake shaking and faulting 117
 - Earthquake shaking intensity 117
 - Measuring fault ruptures 120
- Earthquake frequency–magnitude relationships 122
- Earthquake hazards 125
 - Faulting-induced hazards 125
 - Shaking-induced hazards 126
 - Assessing, avoiding and mitigating earthquake hazards 127
- Summary 135
- Glossary 136
- Review questions 140
- Discussion questions 140
- Further reading and other resources 140
- References 143

7 Tsunamis 147

- James Goff and Catherine Chagué-Goff
- Learning objectives 148
- What is a tsunami? 148
- Introduction and overview 148
- Overview of tsunamis in Australasia 151
 - Australia 151
 - New Zealand 153
 - Pacific Island countries and territories within Australasia 157
 - Distant threats for Australasia 160

© in this web service Cambridge University Press

www.cambridge.org
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Landslides</td>
<td>178</td>
</tr>
<tr>
<td>Samantha Clarke and Thomas Hubble</td>
<td></td>
</tr>
<tr>
<td>Learning objectives</td>
<td>179</td>
</tr>
<tr>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>What is a landslide and why do they happen?</td>
<td>179</td>
</tr>
<tr>
<td>Case studies</td>
<td>180</td>
</tr>
<tr>
<td>An overview of landsliding</td>
<td>186</td>
</tr>
<tr>
<td>Landslide terminology</td>
<td>186</td>
</tr>
<tr>
<td>Overview of landslide occurrence in Australasia</td>
<td>188</td>
</tr>
<tr>
<td>Australia</td>
<td>191</td>
</tr>
<tr>
<td>New Zealand</td>
<td>192</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>198</td>
</tr>
<tr>
<td>Understanding and modelling landslides</td>
<td>198</td>
</tr>
<tr>
<td>Anatomy of a landslide</td>
<td>200</td>
</tr>
<tr>
<td>Slope stability analysis and the infinite slope equation</td>
<td>200</td>
</tr>
<tr>
<td>Infinite slope equation: static analysis</td>
<td>202</td>
</tr>
<tr>
<td>Reconsideration of the case studies</td>
<td>209</td>
</tr>
<tr>
<td>Management and mitigation strategies</td>
<td>210</td>
</tr>
<tr>
<td>Risk avoidance and hazard mapping</td>
<td>210</td>
</tr>
<tr>
<td>Engineered solutions and barriers</td>
<td>213</td>
</tr>
<tr>
<td>Summary</td>
<td>216</td>
</tr>
<tr>
<td>Glossary</td>
<td>216</td>
</tr>
<tr>
<td>Review questions</td>
<td>218</td>
</tr>
<tr>
<td>Discussion questions</td>
<td>219</td>
</tr>
<tr>
<td>Further reading and other resources</td>
<td>219</td>
</tr>
<tr>
<td>References</td>
<td>219</td>
</tr>
<tr>
<td>2 Bushfires</td>
<td>225</td>
</tr>
<tr>
<td>Joshua Whittaker and Katharine Haynes</td>
<td></td>
</tr>
<tr>
<td>Learning objectives</td>
<td>226</td>
</tr>
<tr>
<td>Introduction</td>
<td>226</td>
</tr>
<tr>
<td>Overview of bushfire in Australia</td>
<td>226</td>
</tr>
<tr>
<td>Significant bushfire events</td>
<td>227</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Physical dimensions of bushfire</td>
<td>232</td>
</tr>
<tr>
<td>Climate and fire weather</td>
<td>232</td>
</tr>
<tr>
<td>Vegetation and fuel</td>
<td>233</td>
</tr>
<tr>
<td>Fire behaviour</td>
<td>235</td>
</tr>
<tr>
<td>Human and social dimensions of bushfire</td>
<td>237</td>
</tr>
<tr>
<td>Human locations and land uses</td>
<td>237</td>
</tr>
<tr>
<td>Planning, preparation and response</td>
<td>239</td>
</tr>
<tr>
<td>Gender and bushfire</td>
<td>240</td>
</tr>
<tr>
<td>Life and property losses</td>
<td>240</td>
</tr>
<tr>
<td>Hazard mitigation and risk reduction</td>
<td>242</td>
</tr>
<tr>
<td>Fuel management</td>
<td>243</td>
</tr>
<tr>
<td>Land-use planning</td>
<td>244</td>
</tr>
<tr>
<td>Building regulations and codes</td>
<td>245</td>
</tr>
<tr>
<td>Reducing bushfire ignitions</td>
<td>245</td>
</tr>
<tr>
<td>Fire and emergency response</td>
<td>246</td>
</tr>
<tr>
<td>Prepared, responsive communities</td>
<td>247</td>
</tr>
<tr>
<td>Future challenges</td>
<td>248</td>
</tr>
<tr>
<td>Conclusion</td>
<td>248</td>
</tr>
<tr>
<td>Summary</td>
<td>248</td>
</tr>
<tr>
<td>Glossary</td>
<td>250</td>
</tr>
<tr>
<td>Review questions</td>
<td>251</td>
</tr>
<tr>
<td>Discussion questions</td>
<td>251</td>
</tr>
<tr>
<td>Further reading and other resources</td>
<td>252</td>
</tr>
<tr>
<td>References</td>
<td>252</td>
</tr>
</tbody>
</table>

Index 258
CONTRIBUTORS

Catherine Chagué-Goff is Senior Lecturer in the School of Biological, Earth and Environmental Science at UNSW Australia.

Samantha Clarke is Assistant Lecturer in Geology and Engineering Geology in the Geocoastal Research Group at the University of Sydney.

C R de Freitas is Associate Professor in the School of Environment at the University of Auckland.

Brendan Duffy is Lecturer in Applied Geoscience in the School of Earth Sciences at the University of Melbourne.

James Goff is Professor in the School of Biological, Earth and Environmental Sciences at UNSW Australia.

Katharine Haynes is a Senior Research Fellow at Risk Frontiers, Macquarie University.

Thomas Hubble is Associate Professor in Geology and Engineering Geology at the University of Sydney.

Jan Lindsay is Associate Professor in the School of Environment at the University of Auckland.

Mark Quigley is Associate Professor of Active Tectonics and Geomorphology in the School of Earth Sciences at the University of Melbourne.

Philip Shane is Associate Professor in the School of Environment at the University of Auckland.

Mary Anne Thompson is Research Fellow in the School of Environment at the University of Auckland.

Joshua Whittaker is a Research Fellow at the Centre for Risk & Community Safety at the Royal Melbourne Institute of Technology.
FIGURES AND TABLES

Figures

2.1 Hazard and resource thresholds in relation to rainfall 9
2.2 Aerial view of Milton during Brisbane River flood, January 2011 12
2.3 Brisbane flood 2011 13
2.4 Hydrograph curve produced by continuously measuring run-off from a catchment 16
2.5 Multi-strategy flood management 20
2.6 Flooded house – elevated 26
3.1 Land surface effects intensify drought during summer by positive land-atmosphere feedback 39
3.2 North and South island of New Zealand Soil Moisture Deficit Index anomalies relative to the normal, 1992–2013 46
3.3 Drought conditions during 2013 in the Wairarapa, New Zealand 47
4.1 Tropical cyclones and tornadoes compared 52
4.2 Schematic illustration of the structure of a tropical cyclone in the Southern Hemisphere 53
4.3 Tracks of TC Steve in 2000 56
4.4 Tracks of TC Ingrid in 2005 56
4.5 Coverage areas of Tropical Cyclone Warning Centres in the Australasian region 59
4.6 Tracks of all tropical cyclones for the period 1981–2005 60
4.7 A comparison of tropical cyclone tracks in the South-West Pacific region during La Niña and during El Niño conditions 62
4.8 Impacts of tropical cyclones resulting from rain, wind and storm surge 64
4.9 Illustration of a storm surge during the coastal impact of a tropical cyclone 64
4.10 The track of TC Tracy 21–25 December 1974 66
4.11 Wreckage left by TC Tracy 67
5.1 Map showing Auckland urban areas and past eruption vents and volcanic deposits of the Auckland Volcanic Field 75
5.2 Map showing the location of Australasia in relation to major plate tectonic boundaries and the Pacific Ring of Fire 76
5.3 Map of Australasian volcanic areas and subduction zone trenches 78
5.4 Different shapes and sizes of volcanic landforms 79
5.5 Map of intraplate Newer Volcanics Province in south-eastern Australia 80
5.6 Map showing active volcanic regions of New Zealand's North Island 81
5.7 Images of different volcano types and eruption styles 84
5.8 Images illustrating the volcanic impacts of eruptions 86
5.9 A transdisciplinary, holistic approach to mitigating volcanic activity 96
6.1 (a) The plate tectonic setting of Australasia; (b) Cross-sectional cartoon through the Australian plate; (c) Cross-sectional cartoon through the Australian–Pacific Plate boundary in New Zealand's North Island; (d) Cross-sectional cartoon through the Australian–Pacific continent–continental collisional plate boundary in New Zealand's South Island 109
6.2 Types of faults 110
6.3 (a) The subsurface anatomy of an earthquake rupture; (b) Cross-sectional depth profile of a fault zone and related changes in seismic shear wave velocities 111
6.4 Scaling relationships between earthquake moment magnitude and frequency in Australasia 112
6.5 (a) The seismic cycle and elastic rebound; (b) Plot of fault stress versus time through the seismic cycle; (c) Elastic strain versus time through the seismic cycle; (d) Fault total displacement versus time through the seismic cycle; (e) Stress evolution 114
6.6 The many ways in which earthquakes may be triggered 116
6.7 Methods for measuring earthquake ruptures and studying active faults 121
6.8 (a) Gutenberg–Richter plot for frequency–magnitude relationships in the Canterbury region; (b) Temporal distribution of earthquakes during the Canterbury earthquake 123
6.9 (a) Epicentral locations of M ≥ 5 earthquakes in Australasia since 1905; (b) Gutenberg–Richter plot summarising M ≥ 5 seismicity for the regions delineated in (a) for the period 1905–2014 124
6.10 Earthquake faulting and shaking hazards in a geologically heterogeneous landscape 125
6.11 The geological and seismologic context for the 2010–11 Canterbury earthquake sequence 129
6.12 Recording of the Darfield earthquake surface rupture 130
7.1 Tsunami propagation map showing approximate extent of the 2009 South Pacific tsunami 149
7.2 The 2009 South Pacific tsunami in Samoa 150
7.3 Australasia and its tectonic setting 152
7.4 A series of maps summarising the Australian tsunami record 154
7.5 New Zealand showing main local, regional and distant tsunami sources 155
7.6 Detail of South-West Pacific region highlighting similarly aged Australasian events 156
7.7 Plan geomorphology of Pacific atolls 158
7.8 Summary of wave height data for the 1868 and 1960 distant source Chilean tsunamis 161
7.9 Key terms associated with the life cycle of a tsunami from generation to inundation limit 164
7.10 Simplified risk management process 166

xii Figures and tables
7.11 Example of tsunami inundation and evacuation route map from Waihau Bay, Bay of Plenty, North Island, New Zealand 169
7.12 Generic New Zealand tsunami evacuation sign 169
7.13 Hawaii Island’s Z-Card 171
8.1 (a) Geological map of the Abbotsford landslide; (b) Geological cross-section of the Abbotsford landslide; (c) Oblique aerial view of the Abbotsford landslide 181
8.2 (a) An example of the problems faced along Lawrence Hargrave Drive; (b) The Sea Cliff Bridge 183
8.3 (a) Location map of Tumbi Quarry landslide; (b) Site geology of the Tumbi Quarry; (c) Aftermath of the landslide at Tumbi Quarry 185
8.4 Types of landslides 187
8.5 (a) Landslides occurring along the cliff escarpments of Whakatane coast, New Zealand; (b) Rotational landslide on the coast of the North Island of New Zealand 190
8.6 Fatal landslides in the Australasian region 2004–10 190
8.7 (a) Australasian mean rainfall map; (b) Australasian earthquake distribution and Australian landslide distribution map; (c) Australasian digital elevation map 191
8.8 Map of Australia showing (a) mean rainfall; (b) earthquake distribution; (c) landslide distribution; and (d) digital elevation model showing distribution of steep hillslopes 192
8.9 Map of New Zealand showing (a) mean rainfall; (b) earthquake distribution; (c) distribution of large, multiple-occurrence, rainfall-triggered, regional landslide events 1974–2004; (d) digital elevation model showing the distribution of steep hillslopes 193
8.10 Glade’s map dividing New Zealand into regions of landslide susceptibility 194
8.11 EIL opportunity in New Zealand 196
8.12 Map of PNG showing (a) digital elevation model showing distribution of steep hillslopes; (b) earthquake distribution; (c) landslide distribution; (d) mean rainfall 199
8.13 The 1985 Bialla debris avalanche in Papua New Guinea 200
8.14 Anatomy of a soil slump/landslide with major features labelled 201
8.15 Force stress vectors within a slope 201
8.16 Forces involved in infinite slope model 203
8.17 Simple hillslope stability investigations using the infinite slope equation 206
8.18 (a) The process of cutting the toe of a slope; (b) Example of a hillslope with toe cut away 208
8.19 Schematic approach to landslide hazard and risk evaluation 211
8.20 (a) Hazard due to precipitation-induced landslides in Indonesia; (b) exposure to earthquake-induced landslides in Indonesia 212
8.21 (a) Abseilers installing rock-bolts and wire mesh to prevent rock blocks falling; (b) Meshed rock wall and safety fence; (c) and (d) Abseilers installing soil nails and wire mesh to control slope failure

8.22 The Australian Geomechanics Society’s dos and don’ts of hillslope construction

9.1 Areas of Victoria affected by bushfires during January and February 2009

9.2 A house destroyed in the 2009 ‘Black Saturday’ bushfires

9.3 Australian bushfire seasons

9.4 Parts of a bushfire

9.5 Fire danger ratings

9.6 Population growth and residential development are increasing the exposure of people and assets in bushfire risk areas

9.7 Prescribed burning is undertaken to reduce fuel load

Tables

2.1 Structural and non-structural methods for flood damage reduction

3.1 Rainfall decile classification

3.2 Drought indices and their data needs

3.3 The Drought Monitor classification ranking percentile scheme

4.1 Tropical cyclone categories and corresponding values of approximate average maximum wind speeds and central pressures, modified for the Australian region from the Saffir–Simpson scale

4.2 The Saffir–Simpson tropical cyclone wind scale with types of damage due to wind as used by the US National Hurricane Center Service (NOAA)

4.3 Tropical Cyclone Warning Centres (TCWCs) with regional responsibility throughout Australasia

5.1 Typical characteristics of basalt, andesite, dacite and rhyolite magmas

6.1 Notable earthquakes in Australia and New Zealand, by date

6.2 Modified Mercalli Intensity (MMI) scale and comparison with peak ground acceleration

8.1 Summary of Varnes’s 1978 classification of landslide types

8.2 Landslide velocity scale

8.3 Natural slopes and rock types affected by earthquake-induced landslides

8.4 Typical slope threshold levels from the main types of earthquake-induced landslides

8.5 A range of ground classes of varying landslide vulnerability

8.6 Typical values of unit weight, cohesion and friction angle for a range of slope materials

9.1 A selection of significant Australian bushfire events

9.2 Australian fire danger ratings
CASE STUDIES

2.1 The 2011 Brisbane flood 12
2.2 Coastal flooding and sea-level rise 23
2.3 The making of a tragic flash flood 27
3.1 The Millennium Drought 33
3.2 Dust bowled: the 2012–13 New Zealand drought 46
4.1 Tropical cyclone Tracy (1974) 65
5.1 The Auckland Volcanic Field 75
6.1 The 2010–11 Canterbury earthquake sequence in New Zealand’s South Island 128
7.1 Samoa 2009 148
8.1 Abbotsford, New Zealand (1979) 180
8.2 Rockfalls and earth flows at Lawrence Hargrave Drive, Australia 182
8.3 Complex, multi-factor deep-seated landslide at Tumbi, Papua New Guinea 184
9.1 The 2009 ‘Black Saturday’ bushfires 228
ACKNOWLEDGEMENTS

The authors and Cambridge University Press would like to thank the following for permission to reproduce material in this book.

Text extracts

Images

Figure 2.2, 2.3: © Shutterstock.com/Brisbane; 2.6: © Shutterstock.com/nevenn; 3.2: © Reserve Bank of New Zealand; 3.3: Photo courtesy of NIWA – National Institute of Water and Atmospheric Research (Taihoru Nukurangi); 4.6: Created using User:jdorje/Tracks by Nifanion on 2006-08-05. Background image from File: Whole_world _land_ and_oceans.jpg (NASA). Tracking data for storms within the Atlantic and Eastern Pacific basins is taken from the National Hurricane Center and the Central Pacific Hurricane Center’s Northeast and North Central Pacific hurricane database. The tracking data for storms within the Indian Ocean, the Northwest Pacific and the Southern Pacific is from the Joint Typhoon Warning Center. Tracking data for Cyclone Catarina in the South Atlantic was published in Gary Padgett’s April 2004 Monthly Tropical Cyclone Summary and was originally produced by Roger Edson of the University of Guam; 4.9: © The State of Queensland 2015; 4.11: Billibee/Wikimedia Commons; 5.7a, b, e: © Lloyd Homer GNS Science; 5.7c: © Steven Sherburn GNS Science; 5.7d: Photo: Sonja Storm; 5.8a: © Brad Scott GNS Science; 5.8b: Photo: Carol Stewart; 5.8c–f: Photos by Jan Lindsay; 6.8: GeoNet content is copyright GNS Science and is licensed under a Creative Commons Attribution 3.0 New Zealand License; 7.2: Photo: Catherine Chagué-Goff; 7.7a: Satellite image courtesy of NASA (Visible Earth: http://visibleearth.nasa.gov/); 7.7b: Satellite image courtesy of NASA-Johnson Space Center, Image Science and Analysis Laboratory (http://eol.jsc.nasa.gov/); 7.11: Reproduced with permission of Bay of Plenty Emergency Management Group (BOP CDEM) - (http://bopcivildfence.govt.nz/media/CDBOP/MemberLibrary/Waihau%20Bay%20Tsunami%20Evacuation%20Route%20Map.gif, 2014); 7.13: Courtesy Hawaii Tourism Authority; 8.2a: Photo: Hendrickx et al. 2011. Reproduced with permission from Australian Geomechanics Society; 8.2b: Wikimedia Commons/Illawarrashowcase; 8.4, 8.14: U.S. Geological Survey Department of the Interior/USGS; 8.5a: Image courtesy of tumekeFM 2013; 8.5b: Image courtesy of Mike Marden of New Zealand Landcare Research, Manaaki Whenua; 8.7a: Asia-Pacific: Annual Precipitation (Jul 2015). UN Cartographic Section, WORLDCLIM (Indicator BIO12 of the BIO Coverage), United Nations Office for the Coordination of Humanitarian Affairs (OCHA) Regional Office for Asia Pacific (ROAP). Reprinted with the permission of the United Nations; 8.8a:

Every effort has been made to trace and acknowledge copyright. The publisher apologises for any accidental infringement and welcomes information that would redress this situation.