Emergency Neuroradiology

A Case-Based Approach
Emergency Neuroradiology

A Case-Based Approach

Yang Tang MD PhD
Assistant Professor and Attending Radiologist in Neuroradiology and Emergency Radiology,
Virginia Commonwealth University Medical Center, Richmond, VA, USA

Sugoto Mukherjee MD
Assistant Professor, Department of Radiology and Medical Imaging, University of Virginia Health System,
Charlottesville, VA, USA

Max Wintermark MD MAS MBA
Professor of Radiology and Chief of Neuroradiology, Stanford University, Stanford, CA, USA
CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107676138

© Yang Tang, Sugoto Mukherjee, and Max Wintermark 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Bell and Bain Ltd

A catalog record for this publication is available from the British Library

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors, and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors, and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.
To our families, for the love and unwavering support!
Contents

List of contributors page x
Foreword by Mauricio Castillo xi
Preface xiii
List of abbreviations xiv

Section 1 – Brain
Section editor: Yang Tang

1. Cerebrovascular diseases 1
 Yang Tang, Xinli Du, Sugoto Mukherjee, and Max Wintermark
 Case 1.1: Anterior circulation stroke 1
 Case 1.2: Distal basilar thrombosis 6
 Case 1.3: Spontaneous carotid dissection 8
 Case 1.4: Adult hypoxic–ischemic injury 11
 Case 1.5: Neonatal hypoxic–ischemic injury 14
 Case 1.6: Reperfusion hemorrhage after carotid stenting 17
 Case 1.7: Thrombotic microangiopathy 20
 Case 1.8: Reversible cerebral vasoconstriction syndrome 23
 Case 1.9: Artery of Percheron infarction 25
 Case 1.10: Primary angiitis of central nervous system 27
 Case 1.11: Cerebral venous thrombosis 30
 Case 1.12: Lobar hemorrhage due to dural sinus thrombosis 34
 Case 1.13: Cerebral amyloid angiopathy 37
 Case 1.14: Cavernous malformation 39
 Case 1.15: Cerebral aneurysms 42
 Case 1.16: Vasospasm and delayed cerebral ischemia after subarachnoid hemorrhage 47
 Case 1.17: Cerebral arteriovenous malformation 50
 Case 1.18: Dural arteriovenous fistula 53
 Case 1.19: Cerebral arteriovenous fistula 56
 Case 1.20: Moyamoya disease 57
 Case 1.21: Spontaneous carotid–cavernous fistula 60
 Case 1.22: Carotid blow-out syndrome 62
 Case 1.23: Sinus pericranii 64

2. Head trauma 66
 Yang Tang, Max Wintermark, and Sugoto Mukherjee
 Case 2.1: Epidural hematoma 66
 Case 2.2: Cerebral hemiation syndrome 68

3. Cerebral demyelinating and inflammatory diseases 75
 Yang Tang, Xinli Du, Max Wintermark, and Sugoto Mukherjee
 Case 3.1: Tumefactive multiple sclerosis 75
 Case 3.2: Acute disseminated encephalomyelitis 77
 Case 3.3: Neurosarcoïdosis 79
 Case 3.4: Neuromyelitis optica – brain 82
 Case 3.5: Lupus cerebritis 85
 Case 3.6: Neuro-Bechter’s syndrome 87

4. Intracranial infections 89
 Yang Tang, Xinli Du, Sugoto Mukherjee, and Max Wintermark
 Case 4.1: Bacterial meningitis 89
 Case 4.2: Pyogenic abscess 92
 Case 4.3: CNS tuberculosis 95
 Case 4.4: Cerebral fungal infection 98
 Case 4.5: Herpes encephalitis 102
 Case 4.6: Nonherpetic viral encephalitis 104
 Case 4.7: Lyme neuroborreliosis 107
 Case 4.8: Cerebellitis 109
 Case 4.9: Parenchymal neurocysticercosis 112
 Case 4.10: Ventricular neurocysticercosis 114
 Case 4.11: Creutzfeld–Jakob disease 116
 Case 4.12: Neurosyphilis 118
 Case 4.13: Cerebral toxoplasmosis 120
 Case 4.14: CNS cryptococcosis 122
 Case 4.15: Progressive multifocal leukoencephalopathy 125
 Case 4.16: Cytomegalovirus infection 127

5. Brain tumors and tumor-like conditions 129
 Rajkamal S. Khangura, Max Wintermark, Sugoto Mukherjee, and Yang Tang
 Case 5.1: Glioblastoma multiforme 129
 Case 5.2: Gliomatosis cerebri 132
Contents

Case 5.3: Oligodendroglioma 135
Case 5.4: Primary CNS lymphoma 137
Case 5.5: Brainstem glioma 141
Case 5.6: Pediatric posterior fossa tumors 144
Case 5.7: Central neurocytoma 148
Case 5.8: Dysembryoplastic neuroepithelial tumor 150
Case 5.9: Metastatic neuroblastoma 152
Case 5.10: Tumefactive perivascular space 154
Case 5.11: Hamartoma of tuber cinereum 156
Case 5.12: Epidermoid 158
Case 5.13: Colloid cyst 161
Case 5.14: Ruptured arachnoid cyst 163
Case 5.15: Ruptured intracranial dermoid cyst 165
Case 5.16: Choroid plexus papilloma 167
Case 5.17: Cranioopharyngioma 169
Case 5.18: Intracranial metastasis 171

6 Miscellaneous cerebral emergencies 174
Yang Tang, Matthew R. Parry, Sugoto Mukherjee, and Max Wintermark
Case 6.1: Posterior reversible encephalopathy syndrome 174
Case 6.2: Acute hepatic (hyperammonemic) encephalopathy 177
Case 6.3: Wernicke's encephalopathy 179
Case 6.4: Delayed post-hypoxic leukoencephalopathy 181
Case 6.5: Central pontine myelinolysis 183
Case 6.6: Metronidazole toxicity 185
Case 6.7: Radiation necrosis 187
Case 6.8: Leigh syndrome 193
Case 6.9: Maple-syrup urine disease 196
Case 6.10: Limbic encephalitis 198
Case 6.11: Idiopathic intracranial hypertension 200
Case 6.12: Intracranial hypotension due to CSF leak 202
Case 6.13: Peri-ictal signal changes 206
Case 6.14: Mesial temporal sclerosis 209
Case 6.15: Wallerian degeneration 210
Case 6.16: Amyotrophic lateral sclerosis 212

Section 2 – Head and neck
Section editor: Sugoto Mukherjee

7 Facial trauma 214
David Chiao, Yang Tang, Max Wintemarth, and Sugoto Mukherjee
Case 7.1: Orbital blow-out fractures 214
Case 7.2: Globe injury 216
Case 7.3: Naso-orbital-ethmoidal fractures 218
Case 7.4: Zygomaticomaxillary complex fractures 221
Case 7.5: Le Fort fractures 223
Case 7.6: Mandibular fractures 226

Case 7.7: Temporal bone fractures 228
Case 7.8: Eagle syndrome 230
Case 7.9: Laryngeal injury 232

8 Head and neck infections 234
Jason DeBerry, Max Wintemarth, Sugoto Mukherjee, and Yang Tang
Case 8.1: Acute tonsillitis and peritonsillar abscess 234
Case 8.2: Lempire's syndrome 236
Case 8.3: Odontogenic abscess 238
Case 8.4: Ludwig's angina 240
Case 8.5: Adult supraglottitis 242
Case 8.6: Acute retropharyngeal calcific tendinitis 244
Case 8.7: Retropharyngeal abscess and descending necrotizing mediastinitis 246
Case 8.8: Orbital cellulitis 248
Case 8.9: Invasive fungal sinusitis 250
Case 8.10: Petrous apicitis 253
Case 8.11: Skull base osteomyelitis 256
Case 8.12: Mastoiditis with complications 258

9 Orbits 260
Thomas J. E. Muttil, Yang Tang, Max Wintemarth, and Sugoto Mukherjee
Case 9.1: Optic neuritis 260
Case 9.2: Ophthalmic artery aneurysm 262
Case 9.3: Orbital varix 264
Case 9.4: Orbital cavernous hemangioma 266
Case 9.5: Orbital pseudotumor 268
Case 9.6: Orbital lymphoma 270
Case 9.7: Thyroid ophthalmopathy 272
Case 9.8: Pituitary apoplexy 274
Case 9.9: Cavernous sinus lymphoma 276

10 Paranasal sinuses 279
Jason DeBerry, Max Wintemarth, Sugoto Mukherjee, and Yang Tang
Case 10.1: Allergic fungal sinusitis 279
Case 10.2: Squamous cell carcinoma of maxillary sinus 281
Case 10.3: Esthesioneuroblastoma 282
Case 10.4: Inverted papilloma 284
Case 10.5: Frontoethmoidal meningoencephalocele 286

11 Temporal bone 288
Michael Reardon, Yang Tang, Max Wintemarth, and Sugoto Mukherjee
Case 11.1: External auditory canal cholesteatoma 288
Case 11.2: Middle ear cholesteatoma 290
Case 11.3: Glomus jugulotympanicum paraganglioma 292
Case 11.4: Petrous apex cholesterol granuloma 294
Case 11.5: Labyrinthitis 296
Case 11.6: Endolymphatic sac tumor 298
Case 11.7: Bell’s palsy 300

12. **Head and neck tumors** 302
 David Chiao, Sugoto Mukherjee, Yang Tang, and Max Wintermark
 Case 12.1: Laryngeal carcinoma 302
 Case 12.2: Metastatic nodal mass mimicking brachial cleft cyst 304
 Case 12.3: Vocal cord paralysis 306
 Case 12.4: Skull base tumor 309

13. **Pediatric head and neck conditions** 311
 Michael Reardon, Yang Tang, Max Wintermark, and Sugoto Mukherjee
 Case 13.1: Persistent hyperplastic primary vitreous 311
 Case 13.2: Choanal atresia and pyriform aperture stenosis 313
 Case 13.3: Juvenile nasopharyngeal angiofibroma 315
 Case 13.4: Langerhans cell histiocytosis 317
 Case 13.5: Vascular malformations 320

Section 3 – Spine
Section editor: Max Wintermark

14. **Spinal vascular diseases** 322
 Carlos Leiva-Salinas, Yang Tang, Sugoto Mukherjee, and Max Wintermark
 Case 14.1: Cord infarction 322
 Case 14.2: Perimedullary arteriovenous fistula 324
 Case 14.3: Intramedullary cavernous malformation 326

15. **Spinal trauma** 328
 David T. Powell, Max Wintermark, Sugoto Mukherjee, and Yang Tang
 Case 15.1: Atlanto-occipital dislocation 328
 Case 15.2: Occipital condylar fracture 330
 Case 15.3: Jefferson fracture 332
 Case 15.4: Odontoid fracture 334
 Case 15.5: Hangman fracture 336
 Case 15.6: Hyperflexion injury 338
 Case 15.7: Hyperextension injury 341
 Case 15.8: Central cord syndrome 343
 Case 15.9: Thoracolumbar fractures 345
 Case 15.10: Ankylosing spondylitis 348
 Case 15.11: Brachial plexus injury 350

16. **Spinal infectious and inflammatory diseases** 352
 Thomas J. E. Muttikal, Max Wintermark, Sugoto Mukherjee, and Yang Tang
 Case 16.1: Neuromyelitis optica – spine 352
 Case 16.2: HIV-associated vacuolar myelopathy 354
 Case 16.3: Transverse myelitis 356
 Case 16.4: Guillain–Barré syndrome 358
 Case 16.5: Neurosarcoidosis – spine 360
 Case 16.6: Spondylodiscitis 362

17. **Spinal tumors** 364
 Catherine Shaeffer, Max Wintermark, Sugoto Mukherjee, and Yang Tang
 Case 17.1: Astrocytoma of cord 364
 Case 17.2: Ependymoma of cord 366
 Case 17.3: Myxopapillary ependymoma 368
 Case 17.4: Spinal hemangioblastoma 370
 Case 17.5: Spinal paraangioglioma 372
 Case 17.6: Meningioma of foramen magnum 374
 Case 17.7: Spinal cord metastasis 376
 Case 17.8: Spinal leptomeningeal metastasis 378
 Case 17.9: Vertebral metastasis with cord compression 380

18. **Miscellaneous spine emergencies** 382
 Thomas J. E. Muttikal, David Clifton, Yang Tang, Sugoto Mukherjee, and Max Wintermark
 Case 18.1: Disc extrusion 382
 Case 18.2: Spinal epidural abscess 384
 Case 18.3: Spinal epidural hematoma 386
 Case 18.4: Rheumatoid arthritis of the spine 388
 Case 18.5: Periodontoid pseudotumor 390
 Case 18.6: Vertebral plana 392
 Case 18.7: Arachnoid web 394

Index 396
Contributors

David Chiao MD MPH
Resident Physician, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA

David Clifton MD
Resident Physician, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA

Jason DeBerry MD
Resident Physician, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA

Xinli Du MD PhD
Staff Physician, Department of Neurology, Hunter Holmes McGuire Veterans Affair Medical Center, Richmond, VA, USA

Rajkamal S. Khangura MD
Resident Physician, Department of Radiology, Virginia Commonwealth University Medical Center, Richmond, VA, USA

Carlos Leiva-Salinas MD
Clinical Instructor, Division of Neuroradiology, Department of Radiology and Medical Imaging,

University of Virginia Health System, Charlottesville, VA, USA

Thomas J. E. Muttikal MD
Clinical Instructor, Division of Neuroradiology, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA

Matthew R. Parry MD
Resident Physician, Department of Radiology, Virginia Commonwealth University Medical Center, Richmond, VA, USA

David T. Powell MD
Neuroradiology Fellow, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Michael Reardon MD
Assistant Professor, Division of Neuroradiology, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA

Catherine Shaeffer MD
Resident Physician, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
Foreword

To whom does Emergency Radiology belong? Radiology specialists, radiology generalists, emergency physicians? The truth is that it probably "belongs" to all, depending on where one works. At most teaching hospitals, trainees initially interpret all studies, which are later reviewed by specialists, while at other hospital generalists (sometimes called night hawks) do it all, and at even smaller community hospitals the emergency room personnel may be in charge of rendering the initial imaging interpretations for acutely sick patients. Regardless of who does the initial interpretation of these studies, our knowledge about how to interpret them should come from the best and most experienced specialists, and that is where this case-based book by Drs. Tang, Mukherjee, and Wintermark makes its mark.

Why another case-based book? The way we teach and learn has drastically changed in the last 15 years. While most radiologists of my generation learned by reading (prose) books, younger individuals no longer do it this way. Millennials and Generation Z obtain and process knowledge differently, that is, their knowledge is no longer built in blocks but in a pyramidal fashion by laying a foundation and then building on top of it via the process of accumulating small information bites, synthesizing them, coordinating them, and ending with a good rounded fund of knowledge (or a tall pyramid!). While I learned mostly from text and imagination, newer generations learn mostly in a pictorial fashion, which is perhaps easier and more lasting. This new book does the latter.

Emergency Neuroradiology: A Case-Based Approach is the title of the book you have in your hands – and its name implies expert knowledge, easily delivered and digestible. Beautiful images are accompanied by pithy text and to-the-point information. Cases are grouped into large and general sections, making them easy to find in a hurry. Beyond the usual emergent situations, some cases such as "sinus pericranii" may be useful when facing this entity as an incidental finding in the ED (such as a patient presenting with a bump on the head). CT abounds but MRI, which is increasingly used in emergencies, is also amply represented. We neuroradiologists know that often head emergencies are accompanied by neck and spine ones. Thus, very complete sections on head & neck and spine emergencies are also included.

There is no question that this book will be frequently used in the emergency department, where it belongs – but it should also remind many of us as why we embark on Neuroradiology: it is fun. An expert perusing this book will find its illustrations beautiful and enjoyable, and will still be able to learn something from it.

Mauricio Castillo MD FACR
University of North Carolina School of Medicine,
Chapel Hill, NC, USA
Diseases affecting the brain, head and neck, and spine are prevalent in the emergency setting. Traumatic, vascular, or infectious events are more likely to present acutely, while exacerbations or complications of underlying chronic diseases such as inflammatory, neoplastic, metabolic, degenerative, or even congenital processes can also present in an urgent fashion and may pose a significant diagnostic challenge to clinicians and radiologists. Therefore, there is a strong need to adequately prepare radiologists, especially our trainees, for on-call neuroradiological emergencies.

Although many excellent, comprehensive neuroradiology textbooks are available, we feel that the most effective way of preparing for neuroradiological emergencies is through a concentrated series of case reviews. Our aim in this book is to develop a teaching curriculum specific for emergency neuroradiology and to supplement the large-volume reference books with a concise book, using a case-based, picture-rich format. It includes over 150 selected cases, which are divided into three sections and eighteen chapters, and cover the common as well as some uncommon emergent cases in brain, head and neck, and spine neuroradiology. Each case vignette consists of a short history, images, findings, and diagnosis, followed by focused discussion of differential diagnosis and key points, and supplemented with a short list of suggested readings. Readers can use it either as a primary learning tool or as a quick on-call reference guide.

We would like to thank our colleagues at the Virginia Commonwealth University and University of Virginia Medical Centers for their contributions. A number of residents and fellows have participated in writing up the cases and providing valuable feedback. We would also like to thank the editorial staff at Cambridge University Press for making this book possible, and, last but not least, Dr. Mauricio Castillo for writing a foreword to the book.
Abbreviations

ACA anterior cerebral artery
ACE angiotensin-converting enzyme
A-comm anterior communicating artery
ADC apparent diffusion coefficient
ADEM acute demyelinating encephalomyelitis
AIDP acute inflammatory demyelinating polyneuropathy
AIDS acquired immune deficiency syndrome
ALS amyotrophic lateral sclerosis
AOD atlanto-occipital dislocation
AP anteroposterior
AQP aquaporin
AS ankylosing spondylitis
ATRT atypical teratoid–rhabdoid tumor
AV arteriovenous
AVF arteriovenous fistula
AVM arteriovenous malformation
CAA cerebral amyloid angiopathy
CBF cerebral blood flow
CBV cerebral blood volume
CCF carotid–cavernous fistula
CECT contrast-enhanced computed tomography
CID Creutzfeldt–Jakob disease
CM cavernous malformation
CMV cytomegalovirus
CNS central nervous system
CPM central pontine myelinolysis
CPPD calcium pyrophosphate deposition
CRP C-reactive protein
CSF cerebrospinal fluid
CTA computed tomography angiography
CTV computed tomography venography
CVD cortical venous drainage
DAI diffuse axonal injury
DAVF dural arteriovenous fistula
DCI delayed cerebral ischemia
DIC disseminated intravascular coagulation
DNET dysembryoplastic neuroepithelial tumor
DNM descending necrotizing medulainitis
DSA digital subtraction angiography
DVA developmental venous anomaly

DWI diffusion-weighted imaging
ECA external carotid artery
EDH epidural hematoma
EOM extraocular muscle
EPM extrapontine myelinolysis
ESR erythrocyte sedimentation rate
ELST endolymphatic sac tumor
FDG fludeoxyglucose (18F)
FLAIR fluid-attenuated inversion recovery
GBM glioblastoma multiforme
GBS Guillain–Barré syndrome
GC gliomatosis cerebri
GRE gradient-recalled echo
HAART highly active antiretroviral therapy
HIV human immunodeficiency virus
HPV human papilloma virus
HSV herpes simplex virus
HUS hemolytic uremic syndrome
IAC internal auditory canal
ICA internal cerebral artery
ICP intracranial pressure
ICV internal cerebral vein
IHH idiopathic intracranial hypertension
IRIS immune reconstitution inflammatory syndrome
JNA juvenile nasopharyngeal angiofibroma
LCH Langerhans cell histiocytosis
LNH Lyme neuroborreliosis
MCA middle cerebral artery
MDCT multiple-detector computed tomography
MIP maximum-intensity projection
MPRAGE magnetization prepared rapid gradient echo
MRA magnetic resonance angiography
MRI magnetic resonance imaging
MRV magnetic resonance venography
MS multiple sclerosis
MSUD maple-syrup urine disease
MTS mesial temporal sclerosis
MTT mean transit time
NAA N-acetylaspartate
NBS neuro-Behçet’s syndrome
NCC neurocysticercosis
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NECT</td>
<td>non-enhanced computed tomography</td>
</tr>
<tr>
<td>NMO</td>
<td>neuromyelitis optica</td>
</tr>
<tr>
<td>NOE</td>
<td>naso-orbito-ethmoidal</td>
</tr>
<tr>
<td>PACNS</td>
<td>primary angiitis of central nervous system</td>
</tr>
<tr>
<td>PADI</td>
<td>posterior atlanto-dental interval</td>
</tr>
<tr>
<td>PCA</td>
<td>posterior cerebral artery</td>
</tr>
<tr>
<td>P-comm</td>
<td>posterior communicating artery</td>
</tr>
<tr>
<td>PCNSL</td>
<td>primary CNS lymphoma</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PHPV</td>
<td>persistent hyperplastic primary vitreous</td>
</tr>
<tr>
<td>PICA</td>
<td>posterior inferior cerebellar artery</td>
</tr>
<tr>
<td>PML</td>
<td>progressive multifocal leukoencephalopathy</td>
</tr>
<tr>
<td>PNET</td>
<td>primitive neuroectodermal tumor</td>
</tr>
<tr>
<td>PRES</td>
<td>posterior reversible encephalopathy syndrome</td>
</tr>
<tr>
<td>PTA</td>
<td>peritonsillar abscess</td>
</tr>
<tr>
<td>rCBV</td>
<td>relative cerebral blood volume</td>
</tr>
<tr>
<td>RCVS</td>
<td>reversible cerebral vasoconstriction syndrome</td>
</tr>
<tr>
<td>SAH</td>
<td>subarachnoid hemorrhage</td>
</tr>
<tr>
<td>SCA</td>
<td>superior cerebellar artery</td>
</tr>
<tr>
<td>SCC</td>
<td>squamous cell carcinoma</td>
</tr>
<tr>
<td>SLE</td>
<td>systemic lupus erythematosus</td>
</tr>
<tr>
<td>STIR</td>
<td>short tau inversion recovery</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischemic attack</td>
</tr>
<tr>
<td>TMA</td>
<td>thrombotic microangiopathy</td>
</tr>
<tr>
<td>TMJ</td>
<td>temporomandibular joint</td>
</tr>
<tr>
<td>tPA</td>
<td>tissue plasminogen activator</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight</td>
</tr>
<tr>
<td>TTD</td>
<td>time to drain</td>
</tr>
<tr>
<td>TTP</td>
<td>thrombotic thrombocytopenic purpura</td>
</tr>
<tr>
<td>VHL</td>
<td>von Hippel–Lindau</td>
</tr>
<tr>
<td>WD</td>
<td>Wallerian degeneration</td>
</tr>
<tr>
<td>ZMC</td>
<td>zygomaticomaxillary complex</td>
</tr>
</tbody>
</table>