What are the practical options for addressing global climate change?
How do we provide sustainable energy and electricity for a rapidly growing world population?
Which energy provision options are good, bad, or indifferent?
One of the most important issues facing humanity today is the prospect of global climate change, brought about primarily by our prolific energy use and heavy dependence on fossil fuels. Continuing on our present course as the world economy and population grow will lead to very serious consequences. There are many claims and counterclaims about what to do to avert dire consequences. This has generated a fog of truths, half-truths, and exaggerations, and many people are understandably confused about these issues. The aim of this book is to help dispel the fog, and allow citizens to come to their own conclusions concerning the best options to avert dangerous climate change by switching to more sustainable and affordable energy options.

The book begins with a composed and balanced discussion of the basics of climate change: what we know, how we know it, what the uncertainties are, and what causes it. There is no doubt that global warming is real; the question is how bad we will allow things to get. The main part of the book discusses how to reduce greenhouse gas emissions and limit the global temperature rise, including what the upper limit on greenhouse gases should be, how fast we should go to cut emissions, and all of the energy options being advocated to reduce those emissions. The many sensible, senseless, and self-serving proposals are assessed.

Beyond Smoke and Mirrors provides an accessible and concise overview of climate change science and current energy demand and supply patterns. It presents a balanced view of how our heavy reliance on fossil fuels can be changed over time so that we have a much more sustainable energy system going forward into the twenty-first century and beyond. The book is written in a non-technical style so that it is accessible to a wide range of readers without scientific backgrounds: students, policymakers, and concerned citizens.

BURTON RICHTER is Paul Pigott Professor in the Physical Sciences Emeritus, and Director Emeritus, Stanford Linear Accelerator Center at Stanford University. He is a Nobel Prize-winning physicist for his pioneering work in the discovery of an unexpected, heavy elementary particle that was one of the foundations of what is now called the standard model of particle physics. He received the Lawrence Medal from the US Department of Energy, the Abelson
Prize from the American Association for the Advancement of Science, and the Fermi Award for lifetime achievement. Over the past decade, he has turned his attention from high-energy physics to climate change and energy issues, and has earned a strong reputation in this field as well. He has served on many national and international review committees, but his most direct involvement is with nuclear energy where he chaired an advisory committee to the US Department of Energy. He was also chairman of a recent American Physical Society study on energy efficiency, and a member of the “Blue Ribbon Panel” that oversaw the final edit of the US climate impact assessment that was released in 2000. He has written over 300 papers in scientific journals and op-ed articles for the New York Times, Washington Post, and LA Times.
Contents

5 Predicting the Future \hspace{1em} 56
5.1 Who Does It? \hspace{1em} 56
5.2 How Is It Done? \hspace{1em} 60
5.3 Results \hspace{1em} 65
5.4 Where Are We? \hspace{1em} 73

Part II Energy

6 Taking up Arms Against this Sea of Troubles \hspace{1em} 79
6.1 Introduction \hspace{1em} 79
6.2 Energy Now and in the Future \hspace{1em} 81
\begin{center}Market Exchange and PPP\end{center} \hspace{1em} 86
6.3 Emission Targets \hspace{1em} 90
\begin{center}Technical Note 6.1: Carbon Dioxide Equivalents\end{center} \hspace{1em} 91
7 How Fast to Move: A Physicist’s Look at the Economists \hspace{1em} 96
8 Energy, Emissions, and Action \hspace{1em} 103
8.1 Setting the Stage \hspace{1em} 103
8.2 Sources of Emissions \hspace{1em} 105
\begin{center}Energy and Greenhouse Emission from Fossil Fuels\end{center} \hspace{1em} 108
8.3 Reducing Emissions \hspace{1em} 110
8.4 No Silver Bullets \hspace{1em} 112
8.5 Winners and Losers \hspace{1em} 115
9 Fossil Fuels – How Much Is There? \hspace{1em} 117
9.1 World Oil Reserves \hspace{1em} 118
9.2 World Gas Reserves \hspace{1em} 123
9.3 World Coal \hspace{1em} 127
9.4 Conclusion \hspace{1em} 128
10 Electricity, Emissions, and Pricing Carbon \hspace{1em} 131
10.1 The Electricity Sector \hspace{1em} 131
Contents

10.2 Pricing Carbon Emissions: Carbon Capture and Storage 140
10.3 Does What Goes into Storage Stay There? 143
10.4 Summary and Conclusion 148
11 Efficiency: the First Priority 150
11.1 Introduction 150

Primary and End-Use Energy Efficiency 155
11.2 Transportation 156
11.3 Buildings 172
11.4 Conclusion 183

Technical Note 11.1: CAFE Standards 184
12 Nuclear Energy 189
12.1 Introduction 189
12.2 Radiation 195
12.3 Safety 198
12.4 Spent Fuel: Love It or Hate It, We Have It 206
12.5 Proliferation of Nuclear Weapons 213
12.6 Fusion 219
12.7 Nuclear Power as Part of the Solution 223

Technical Note 12.1: Nuclear Power Primer 225
Technical Note 12.2: France’s Long-Range Nuclear Development Plan 227
Technical Note 12.3: Producing Material for Weapons 230
Technical Note 12.4: Extract from the Treaty on the Non-Proliferation of Nuclear Weapons 233
Technical Note 12.5: Issues in Internationalizing the Fuel Cycle 234
13 Renewables 238
13.1 Introduction 238
13.2 Wind 240
Contents

13.3 Solar Energy 248
13.4 Geothermal 257
13.5 Hydropower 264
13.6 Ocean Energy 266
13.7 The Electric Power Distribution Grid 268
 Technical Note 13.1: Photovoltaic cells 269
14 Biofuels: Is There Anything There? 272
 14.1 Introduction 272
 14.2 Phase-1: Ethanol from Starch and Sugar 275
 14.3 Phase-2: Cellulosic Ethanol 283
 14.4 Phase-3: Other Processes 287
 14.5 Summary 289
15 An Energy Summary 291
 15.1 The Size of the Problem 291
 15.2 Ranking the Solutions 298
 15.3 Cost 305

Part III Policy

 16.1 Introduction 315
 16.2 Reducing Emissions on a National Scale 317
 16.3 Bad Things 324
 16.4 Good Things 328
17 World Policy Actions 333
 17.1 Introduction 333
 17.2 Kyoto-1: The Protocol of 1997 335
 17.3 Kyoto-2 338
18 Coda 348

References 350
Index 355

viii
PREFACE TO THE SECOND EDITION

This second edition of this book is aimed at the general public, as was the first edition. It is not intended to be a textbook, but rather an accessible overview of what we know and don’t know about energy and climate change, what options we have to reduce greenhouse gas emissions in the energy sector of our economy, and what policies we should and should not adopt to make progress. I have also come to realize that climate change is not the only reason we have to change the energy sources that drive the economies of the world, and will discuss the others.

I am a latecomer to the climate and energy field. My career has been in physics. I received my PhD in 1956 and my Nobel Prize in 1976 at the relatively young age of 45. Many Nobel Laureates continue research, but some look for other mountains to climb, and I was one of those. I took on the job of directing a large Department of Energy scientific laboratory at Stanford University in 1984. During my 15 years as director we expanded opportunities in many areas; the number of users from outside Stanford that came to the laboratory rose from about 1000 to nearly 3000, and the facilities that we pioneered were reproduced in many parts of the world.

Like many scientists, I had followed the growing debate on climate change from a distance, though I did have some peripheral involvement in related areas having to do with energy options. I became seriously interested in
climate and energy issues in the mid-1990s, partly because it was clear that this would be a critical issue for the future and partly because of the lure of another mountain range. Since stepping down as a laboratory director in 1999, I have devoted most of my time to various aspects of the issue.

Having a Nobel Prize is a great advantage when moving into a new area. Besides being one of the highest scientific honors, it is a great door opener. Nobel Laureate Richter had a much easier time getting appointments with high-level officials in government and industry in the United States and abroad than would have scientist Richter. I have served on many review committees, both national and international, ranging from the US government's analysis of the effects of climate change on the economy, to the nuclear energy programs of both the United States and France, to the role of efficiency in the reduction of greenhouse gas emissions.

The original 2006 outline for this book devoted much space to the reality of global warming. The pendulum has swung since then and a majority of the general public now seems convinced of its reality. Much credit for the change goes to former Vice President Al Gore, and to his movie and book *An Inconvenient Truth*. His Academy Award and Nobel Peace Prize are testaments to the influence of his work. His dramas have been important in getting people to pay attention, but for appropriate decisions to be taken, we need a more realistic view than his about the dangers, the uncertainties, and the opportunities for action.

The public needs and deserves an honest science-based explanation of what we know, how we know it, what the uncertainties are, how long it will take to reduce those
uncertainties, and what we can do to reduce the risk of long-term changes to the world climate that make the Earth less hospitable to society. If I do my job well, the reader will have enough information to come to his or her own conclusion.

Personally, I should tell you that I do believe in beginning to invest in reducing greenhouse emissions as a kind of environmental insurance for my two young granddaughters (ages 9 and 6.5 as I write this in early 2014). A beginning now will cost much less than we are spending on the bailout of the world's financial institutions. If later information says that things are better or worse than we now expect, we can change our program, but the earlier we start the easier it will be to do some good.
UNITs

The book uses a combination of American and metric units. Almost all data on greenhouse gas emissions are given in metric units. Most electric power units are metric also. In this list I give some of the conversion factors.

Temperature

1 degree centigrade (°C) = 1.8 degrees Fahrenheit (°F)

Large Numbers

kilo (k) = thousand
mega (M) = million
giga (G) = billion (US) or thousand million (Europe)
tera (T) = thousand billion or a million million
Examples: kilowatt (kW), gigatonnes (Gt), etc.

Weight

tonne (t) = 1000 kilograms (kg) = 2200 pounds (lb)
ton = 2000 pounds

Distance

1 meter = 39.4 inches
1 kilometer = 1000 meters = 0.62 miles
List of Units

Volume
1 barrel (bbl) = 42 gallons (US)
1 liter = 1.056 quarts = 0.264 gallon

Power
1 watt = basic unit of electrical power = 1 joule per second
1 gigawatt (GW) = one billion (or 1000 million) watts

Energy
Energy = power × time
1 kWh = 1 kilowatt-hour = 3 600 000 joules
1 BTU = 1054 joules
1 Quad = 1 × 10^{15} BTU = 1.054 × 10^{18} joules
1 TJ = 1 × 10^{12} joules
CONVERSION FACTORS

Energy conversion factors

<table>
<thead>
<tr>
<th>To:</th>
<th>TJ</th>
<th>Mtoe</th>
<th>MBTU</th>
<th>GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>1</td>
<td></td>
<td>2.388 x 10^-5</td>
<td>947.8</td>
</tr>
<tr>
<td>Mtoe</td>
<td>4.1868 x 10^4</td>
<td>1</td>
<td>3.968 x 10^7</td>
<td>11 630</td>
</tr>
<tr>
<td>MBTU</td>
<td>1.0551 x 10^-3</td>
<td>2.52 x 10^-8</td>
<td>1</td>
<td>2.931 x 10^-4</td>
</tr>
<tr>
<td>GWh</td>
<td>3.6</td>
<td>8.6 x 10^-5</td>
<td>3412</td>
<td>1</td>
</tr>
</tbody>
</table>

Multiply from by to for number of units
* Million tonnes of oil equivalent

Mass conversion factors

<table>
<thead>
<tr>
<th>To:</th>
<th>kg</th>
<th>t</th>
<th>ton</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kilogram (kg)</td>
<td>1</td>
<td>0.001</td>
<td>1.102 x 10^-3</td>
<td>2.2</td>
</tr>
<tr>
<td>tonne (t)</td>
<td>1000</td>
<td>1</td>
<td>1.1023</td>
<td>2204.6</td>
</tr>
<tr>
<td>ton</td>
<td>907.2</td>
<td>0.9072</td>
<td>1</td>
<td>2000.0</td>
</tr>
<tr>
<td>pound (lb)</td>
<td>0.454</td>
<td>4.54 x 10^-4</td>
<td>5.0 x 10^-4</td>
<td>1</td>
</tr>
</tbody>
</table>

Multiply from by to for number of units
List of Conversion Factors

Volume conversion factors

<table>
<thead>
<tr>
<th>To:</th>
<th>gal US</th>
<th>gal UK</th>
<th>bbl</th>
<th>ft³</th>
<th>l</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US gallon (gal)</td>
<td>1</td>
<td>0.8327</td>
<td>0.02381</td>
<td>0.1337</td>
<td>3.785</td>
<td>0.0038</td>
</tr>
<tr>
<td>UK gallon (gal)</td>
<td>1.201</td>
<td>1</td>
<td>0.02859</td>
<td>0.1605</td>
<td>4.546</td>
<td>0.0015</td>
</tr>
<tr>
<td>barrel (bbl)</td>
<td>42.0</td>
<td>34.97</td>
<td>1</td>
<td>5.615</td>
<td>159.0</td>
<td>0.159</td>
</tr>
<tr>
<td>cubic foot (ft³)</td>
<td>7.48</td>
<td>6.229</td>
<td>0.1781</td>
<td>1</td>
<td>28.3</td>
<td>0.0283</td>
</tr>
<tr>
<td>liter (l)</td>
<td>0.2642</td>
<td>0.220</td>
<td>0.0063</td>
<td>0.0353</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>cubic meter (m³)</td>
<td>264.2</td>
<td>210.0</td>
<td>6.289</td>
<td>35.3147</td>
<td>1000.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Multiply from by to for number of units
ABBREVIATIONS

ACEEE American Council for an Energy Efficient Economy
AOGCM atmosphere–ocean general circulation model
APS American Physical Society
BAU business as usual
BEV battery-powered electric vehicle
CAFE corporate average fuel economy
CCS carbon capture and storage (sometimes sequestration)
CO_2 carbon dioxide, the main human-caused greenhouse gas
CO_2e carbon dioxide equivalent
DOE US Department of Energy
DSM demand side management
E_i energy intensity (energy divided by GDP)
EGS enhanced geothermal systems
EIA Energy Information Administration (a division of the DOE)
EPA US Environmental Protection Agency
EU European Union
FF fission fragments
GDP gross domestic product
GNEP Global Nuclear Energy Partnership
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRS</td>
<td>greenhouse gas reduction standard</td>
</tr>
<tr>
<td>HEU</td>
<td>highly enriched uranium (suitable for weapons)</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>ICE</td>
<td>internal combustion engine</td>
</tr>
<tr>
<td>ICSU</td>
<td>International Council for Science</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency (division of the OECD)</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute of Applied Systems Analysis</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LWR</td>
<td>light water reactor</td>
</tr>
<tr>
<td>NAS</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>NPT</td>
<td>Treaty on the Non-Proliferation of Nuclear Weapons</td>
</tr>
<tr>
<td>NRC</td>
<td>US Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OPEC</td>
<td>Organization of Petroleum Exporting Countries</td>
</tr>
<tr>
<td>OTA</td>
<td>Office of Technology Assessment</td>
</tr>
<tr>
<td>PHEV</td>
<td>plug-in hybrid electric vehicle</td>
</tr>
<tr>
<td>PPP</td>
<td>purchasing power parity</td>
</tr>
<tr>
<td>PV</td>
<td>photovoltaic</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>RPS</td>
<td>renewable portfolio standard</td>
</tr>
<tr>
<td>TCM</td>
<td>trillion cubic meters</td>
</tr>
<tr>
<td>TMI</td>
<td>Three Mile Island</td>
</tr>
<tr>
<td>TPES</td>
<td>total primary energy supply</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic elements</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>VMT</td>
<td>vehicle miles traveled</td>
</tr>
<tr>
<td>WEC</td>
<td>World Economic Council</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>ZNE</td>
<td>zero net energy</td>
</tr>
</tbody>
</table>