CHAPTER 1

INTRODUCTORY

Of the chemistry of his day and generation, Kant declared that it was a science, but not Science—eine Wissenschaft, aber nicht Wissenschaft—for that the criterion of true science lay in its relation to mathematics. This was an old story: for Roger Bacon had called mathematics porta et clavis scientiarum, and Leonardo da Vinci had said much the same. Once again, a hundred years after Kant, Du Bois Reymond, profound student of the many sciences on which physiology is based, recalled the old saying, and declared that chemistry would only reach the rank of science, in the high and strict sense, when it should be found possible to explain chemical reactions in the light of their causal relations to the velocities, tensions and conditions of equilibrium of the constituent molecules; that, in short, the chemistry of the future must deal with molecular mechanics by the methods and in the strict language of mathematics, as the astronomy of Newton and Laplace dealt with the stars in their courses. We know how great a step was made towards this distant goal as Kant defined it, when van’t Hoff laid the firm foundations of a mathematical chemistry, and earned his proud epitaph—Physicam chemiae adiunxit.

We need not wait for the full realisation of Kant’s desire, to apply to the natural sciences the principle which he laid down. Though chemistry fall short of its ultimate goal in mathematical mechanics, nevertheless physiology is vastly strengthened and enlarged by making use of the chemistry, and of the physics, of the age. Little by little it draws nearer to our conception of a true science with each branch of physical science which it brings into relation with itself: with every physical law and mathematical theorem which it learns to take into its employ. Between the physiology of Haller, fine as it was, and that of Liebig, Helmholtz, Ludwig, Claude Bernard, there was all the difference in the world.¹

As soon as we adventure on the paths of the physicist, we learn

¹ It is well within my own memory how Thomson and Tait, and Klein and Sylvester had to lay stress on the mathematical aspect, and urge the mathematical study, of physical science itself!
to **weigh** and to **measure**, to deal with time and space and mass and their related concepts, and to find more and more our knowledge expressed and our needs satisfied through the concept of **number**, as in the dreams and visions of Plato and Pythagoras; for modern chemistry would have gladdened the hearts of those great philosophic dreamers. Dreams apart, numerical precision is the very soul of science, and its attainment affords the best, perhaps the only criterion of the truth of theories and the correctness of experiments.¹ So said Sir John Herschel, a hundred years ago; and Kant had said that it was Nature herself, and not the mathematician, who brings mathematics into natural philosophy.

But the zoologist or morphologist has been slow, where the physiologist has long been eager, to invoke the aid of the physical or mathematical sciences; and the reasons for this difference lie deep, and are partly rooted in old tradition and partly in the diverse minds and temperaments of men. To treat the living body as a mechanism was repugnant, and seemed even ludicrous, to Pascal; and Goethe, lover of nature as he was, ruled mathematics out of place in natural history. Even now the zoologist has scarce begun to dream of defining in mathematical language even the simplest organic forms. When he meets with a simple geometrical construction, for instance in the honeycomb, he would fain refer it to psychical instinct, or to skill and ingenuity, rather than to the operation of physical forces or mathematical laws; when he sees in snail, or nautilus, or tiny foraminiferal or radiolarian shell a close approach to sphere or spiral, he is prone of old habit to believe that after all it is something more than a spiral or a sphere, and that in this ‘something more’ there lies what neither mathematics nor physics can explain. In short, he is deeply reluctant to compare the living with the dead, or to explain by geometry or by mechanics the things which have their part in the mystery of life. Moreover he is little inclined to feel the need of such explanations, or of such extension of his field of thought. He is not without some justification if he feels that in admiration of nature’s handiwork he has an horizon before his eyes as wide as any man requires. He has the help of many fascinating theories within the bounds of his own science, which, though a little lacking in precision, serve the purpose of ordering his thoughts and of suggesting new objects of enquiry. His art of classification becomes an endless search

¹ Dr Johnson says that ‘to count is a modern practice, the ancient method was to guess’; but Seneca was alive to the difference—‘magnum esse solem philosophus probabit, quantus sit mathematicus’.

2
after the blood-relationships of things living and the pedigrees of things dead and gone. The facts of embryology record for him (as Wolff, von Baer and Fritz Müller proclaimed) not only the life-history of the individual but the ancient annals of its race. The facts of geographical distribution or even of the migration of birds lead on and on to speculations regarding lost continents, sunken islands, or bridges across ancient seas. Every nesting bird, every ant-hill or spider’s web, displays its psychological problems of instinct or intelligence. Above all, in things both great and small, the naturalist is rightfully impressed and finally engrossed by the peculiar beauty which is manifested in apparent fitness or ‘adaptation’—the flower for the bee, the berry for the bird.

Some lofty concepts, like space and number, involve truths remote from the category of causation; and here we must be content, as Aristotle says, if the mere facts be known. But natural history deals with ephemeral and accidental, not eternal nor universal things; their causes and effects thrust themselves on our curiosity, and become the ultimate relations to which our contemplation extends.

Time out of mind it has been by way of the ‘final cause’, by the teleological concept of end, of purpose or of ‘design’, in one of its many forms (for its moods are many), that men have been chiefly wont to explain the phenomena of the living world; and it will be so while men have eyes to see and ears to hear withal. With Galen, as with Aristotle, it was the physician’s way; with John Ray, as with Aristotle, it was the naturalist’s way; with Kant, as with Aristotle, it was the philosopher’s way. It was the old Hebrew way, and has its splendid setting in the story that God made ‘every plant of the field before it was in the earth, and every herb of the field before it grew’. It is a common way, and a great way; for it brings with it a glimpse of a great vision, and it lies deep as the love of nature in the hearts of men.

The argument of the final cause is conspicuous in eighteenth-century physics, half overshadowing the ‘efficient’ or physical cause in the hands of such men as Euler, or Fermat or Maupertuis, to whom Leibniz had passed it on. Half overshadowed by the mechanical concept, it runs through Claude Bernard’s *Leçons sur les phénomènes de la Vie*, and abides in much of modern physiology. Inherited from Hegel, it dominated Oken’s *Naturphilosophie* and lingered among his later disciples, who were wont to liken the course of organic evolution not to the straggling branches of a tree, but to the building of a temple, divinely planned, and the crowning of it with its polished minarets.
It is retained, somewhat crudely, in modern embryology, by those who see in the early processes of growth a significance ‘rather prospective than retrospective’, such that the embryonic phenomena must ‘be referred directly to their usefulness in building up the body of the future animal’¹—which is no more, and no less, than to say, with Aristotle, that the organism is the τέλος, or final cause, of its own processes of generation and development. It is writ large in that Entelechy which Driesch rediscovered, and which he made known to many who had neither learned of it from Aristotle, nor studied it with Leibniz, nor laughed at it with Rabelais and Voltaire. And, though it is in a very curious way, we are told that teleology was ‘refounded, reformed and rehabilitated’ by Darwin’s concept of the origin of species;² for, just as the older naturalists held (as Addison puts it)³ that ‘the make of every kind of animal is different, from that of every other kind; and yet there is not the least turn in the muscles, or twist in the fibres of any one, which does not render them more proper for that particular animal’s way of life than any other cut or texture of them would have been’; so, by the theory of natural selection, ‘every variety of form and colour was urgently and absolutely called upon to produce its title to existence either as an active useful agent, or as a survival’ of such active usefulness in the past. But in this last, and very important case, we have reached a teleology without a τέλος, as men like Butler and Janet have been prompt to show, an ‘adaptation’ without ‘design’, a teleology in which the final cause becomes little more, if anything, than the mere expression or resultant of a sifting out of the good from the bad, or of the better from the worse, in short of a process of mechanism. The apparent manifestations of purpose or adaptation become part of a mechanical philosophy, ‘une forme méthodologique de connaissance’, according to which ‘la Nature agit toujours par les moyens les plus simples’,⁴ and ‘chaque chose finit toujours par s’accommoder à son milieu’, as in the Epicurean creed or aphorism that Nature *finds a use for everything*. In short, by a road which resembles but is not the same as Maupertuis’s road, we find our way to the very world in which we are living, and find that, if it be not, it is ever tending to become, ‘the best of all possible worlds’.⁵

³ *Spectator*, no. 120.
⁵ The phrase is Leibniz’s, in his *Théodicée*: and harks back to Aristotle—if one way be better than another, that you may be sure is Nature’s way; *Nic. Eth.* 1099 b, 23 et al.
But the use of the teleological principle is but one way, not the whole or the only way, by which we may seek to learn how things came to be, and to take their places in the harmonious complexity of the world. To seek not for ends but for antecedents is the way of the physicist, who finds ‘causes’ in what he has learned to recognise as fundamental properties, or inseparable concomitants, or unchanging laws, of matter and of energy. In Aristotle’s parable, the house is there that men may live in it; but it is also there because the builders have laid one stone upon another. It is as a mechanism, or a mechanical construction, that the physicist looks upon the world; and Democritus, first of physicists and one of the greatest of the Greeks, chose to refer all natural phenomena to mechanism and set the final cause aside.

Still, all the while, like warp and woof, mechanism and teleology are interwoven together, and we must not cleave to the one nor despise the other; for their union is rooted in the very nature of totality. We may grow shy or weary of looking to a final cause for an explanation of our phenomena; but after we have accounted for these on the plainest principles of mechanical causation it may be useful and appropriate to see how the final cause would tally with the other, and lead towards the same conclusion. In our own day the philosopher neither minimises nor unduly magnifies the mechanical aspect of the Cosmos; nor need the naturalist either exaggerate or belittle the mechanical phenomena which are profoundly associated with Life, and inseparable from our understanding of Growth and Form.

Nevertheless, when philosophy bids us hearken and obey the lessons both of mechanical and of teleological interpretation, the precept is hard to follow: so that oftentimes it has come to pass, just as in Bacon’s day, that a leaning to the side of the final cause ‘hath intercepted the severe and diligent enquiry of all real and physical causes’, and has brought it about that ‘the search of the physical cause hath been neglected and passed in silence’. So long and so far as ‘fortuitous variation’¹ and the ‘survival of the fittest’ remain engrained as fundamental and satisfactory hypotheses in the philosophy of biology, so long will these ‘satisfactory and specious causes’ tend to stay ‘severe and diligent enquiry...to the great arrest and prejudice of future discovery’. Long before the great

¹ The reader will understand that I speak, not of the ‘severe and diligent enquiry’ of variation or of fortuity, but merely of the easy assumption that these phenomena are a sufficient basis on which to rest, with the all-powerful help of natural selection, a theory of definite and progressive evolution.
Lord Keeper wrote these words, Roger Bacon had shown how easy it is, and how vain, to survey the operations of Nature and idly refer her wondrous works to chance or accident, or to the immediate interposition of God.

The difficulties which surround the concept of ultimate or ‘real’ causation, in Bacon’s or Newton’s sense of the word, the insuperable difficulty of giving any just and tenable account of the relation of cause and effect from the empirical point of view, need scarcely hinder us in our physical enquiry. As students of mathematical and experimental physics we are content to deal with those antecedents, or concomitants, of our phenomena without which the phenomenon does not occur—with causes, in short, which, aliæ ex aliis aptae et necessitate nexae, are no more, and no less, than conditions sine qua non. Our purpose is still adequately fulfilled: inasmuch as we are still enabled to correlate, and to equate, our particular phenomena with more and more of the physical phenomena around, and so to weave a web of connection and interdependence which shall serve our turn, though the metaphysician withhold from that interdependence the title of causality. We come in touch with what the schoolmen called a ratio cognoscendi, though the true ratio efficiendi is still enwrapped in many mysteries. And so handled, the quest of physical causes merges with another great Aristotelian theme—the search for relations between things apparently disconnected, and for ‘similitude in things to common view unlike’.\footnote{‘Plurimum amo analogias, fidelissimos meas magistros, omnium Naturae arcanorum conscios’, said Kepler; and Perrin speaks with admiration, in \textit{Les Atomes}, of men like Galileo and Carnot, who ‘possessed the power of perceiving analogies to an extraordinary degree’. Hume declared, and Mill said much the same thing, that all reasoning whatsoever depends on resemblance or analogy, and the power to recognise it. Comparative anatomy (as \textit{Vieeq d'Azyr} first called it), or comparative physics (to use a phrase of Mach’s), are particular instances of a sustained search for analogy or similitude.} Newton did not show the cause of the apple falling, but he showed a similitude (‘the more to increase our wonder, with an apple’) between the apple and the stars. By doing so he turned old facts into new knowledge; and was well content if he could bring diverse phenomena under ‘two or three Principles of Motion’ even ‘though the Causes of these Principles were not yet discovered’.

Moreover, the naturalist and the physicist will continue to speak of ‘causes’, just as of old, though it may be with some mental reservations: for, as a French philosopher said in a kindred difficulty: ‘ce sont là des manières de s’exprimer, et si elles sont interdites il faut renoncer à parler de ces choses’.

\footnote{‘Plurimum amo analogias, fidelissimos meas magistros, omnium Naturae arcanorum conscios’, said Kepler; and Perrin speaks with admiration, in \textit{Les Atomes}, of men like Galileo and Carnot, who ‘possessed the power of perceiving analogies to an extraordinary degree’. Hume declared, and Mill said much the same thing, that all reasoning whatsoever depends on resemblance or analogy, and the power to recognise it. Comparative anatomy (as \textit{Vieeq d'Azyr} first called it), or comparative physics (to use a phrase of Mach’s), are particular instances of a sustained search for analogy or similitude.}
The search for differences or fundamental contrasts between the phenomena of organic and inorganic, of animate and inanimate things, has occupied many men’s minds, while the search for community of principles or essential similitudes has been pursued by few; and the contrasts are apt to loom too large, great though they may be. M. Dunan, discussing the Problème de la Vie,¹ in an essay which M. Bergson greatly commends, declares that ‘les lois physico-chimiques sont aveugles et brutales; là où elles règnent seules, au lieu d’un ordre et d’un concert, il ne peut y avoir qu’incohérence et chaos’. But the physicist proclaims aloud that the physical phenomena which meet us by the way have their forms not less beautiful and scarce less varied than those which move us to admiration among living things. The waves of the sea, the little ripples on the shore, the sweeping curve of the sandy bay between the headlands, the outline of the hills, the shape of the clouds, all these are so many riddles of form, so many problems of morphology, and all of them the physicist can more or less easily read and adequately solve: solving them by reference to their antecedent phenomena, in the material system of mechanical forces to which they belong, and to which we interpret them as being due. They have also, doubtless, their immanent teleological significance; but it is on another plane of thought from the physicist’s that we contemplate their intrinsic harmony² and perfection, and ‘see that they are good’.

Nor is it otherwise with the material forms of living things. Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is in obedience to the laws of physics that their particles have been moved, moulded and conformed.³ They are no exception to the rule that Ὁδὸς ἀεὶ γεωμετρεῖ. Their problems of form are in the first instance mathematical problems, their problems

¹ Revue Philosophique, 33 (1892).
² What I understand by ‘holism’ is what the Greeks called ἀδυναμία. This is something exhibited not only by a lyre in tune, but by all the handiwork of craftsmen, and by all that is ‘put together’ by art or nature. It is the ‘compositeness of any composite whole’; and, like the cognate terms κόσμος or σύνθεσις, implies a balance or attunement. Cf. John Tate, in Class. Rev. (February 1939).
³ This general principle was clearly grasped by Mr George Rainey many years ago, and expressed in such words as the following: ‘It is illogical to suppose that in the case of vital organisms a distinct force exists to produce results perfectly within the reach of physical agencies, especially as in many instances no end could be attained were that the case, but that of opposing one force by another capable of effecting exactly the same purpose.’ (On artificial calculi, Quart. J. Micr. Sci. (Trans. Micr. Soc.), 6 (1858), 49.) (Mr George Rainey, a man of learning and originality, was demonstrator of anatomy at St Thomas’s; he followed that modest calling to a great age, and is remembered by a few old pupils with peculiar affection.)
of growth are essentially physical problems, and the morphologist is, *ipso facto*, a student of physical science.

Apart from the physico-chemical problems of physiology, the road of physico-mathematical or dynamical investigation in morphology has found few to follow it; but the pathway is old. The way of the old Ionian physicians, of Anaxagoras,1 of Empedocles and his disciples in the days before Aristotle, lay just by that highway side. It was Galileo's and Borelli's way; and Harvey's way, when he discovered the circulation of the blood. It was little trodden for long afterwards, but once in a while Swammerdam and Réaumur passed thereby. And of later years Moseley and Meyer, Berthold, Errera and Roux have been among the little band of travellers. We need not wonder if the way be hard to follow, and if these wayfarers have yet gathered little. A harvest has been reaped by others, and the gleaning of the grapes is slow.

It behoves us always to remember that in physics it has taken great men to discover simple things. They are very great names indeed which we couple with the explanation of the path of a stone, the droop of a chain, the tints of a bubble, the shadows in a cup. It is but the slightest adumbration of a dynamical morphology that we can hope to have until the physicist and the mathematician shall have made these problems of ours their own, or till a new Boscovich shall have written for the naturalist the new *Theoria Philosophiae Naturalis*.

How far even then mathematics will suffice to describe, and physics to explain, the fabric of the body, no man can foresee. It may be that all the laws of energy, and all the properties of matter, and all the chemistry of all the colloids are as powerless to explain the body as they are impotent to comprehend the soul. For my part, I think it is not so. Of how it is that the soul informs the body, physical science teaches me nothing; and that living matter influences and is influenced by mind is a mystery without a clue. Consciousness is not explained to my comprehension by all the nerve-paths and neurones of the physiologist; nor do I ask of physics how goodness shines in one man's face, and evil betrays itself in another. But of the construction and growth and working of the body, as of all else that is of the earth earthy, physical science is, in my humble opinion, our only teacher and guide.

Often and often it happens that our physical knowledge is in-

1 Whereby he incurred the reproach of Socrates, in the *Phaedo*. See Clerk Maxwell on 'Anaxagoras as a Physicist', in *Phil. Mag. (4)*, 46 (1873), 453–60.
adequate to explain the mechanical working of the organism; the phenomena are superlatively complex, the procedure is involved and entangled, and the investigation has occupied but a few short lives of men. When physical science falls short of explaining the order which reigns throughout these manifold phenomena—an order more characteristic in its totality than any of its phenomena in themselves—men hasten to invoke a guiding principle, an entelechy, or call it what you will. But all the while no physical law, any more than gravity itself, not even among the puzzles of stereo-chemistry or of physiological surface-action and osmosis, is known to be transgressed by the bodily mechanism.

Some physicists declare, as Maxwell did, that atoms or molecules more complicated by far than the chemist’s hypotheses demand, are requisite to explain the phenomena of life. If what is implied be an explanation of psychical phenomena, let the point be granted at once; we may go yet further and decline, with Maxwell, to believe that anything of the nature of physical complexity, however exalted, could ever suffice. Other physicists, like Auerbach,1 or Larmor,2 or Joly,3 assure us that our laws of thermodynamics do not suffice, or are inappropriate, to explain the maintenance, or (in Joly’s phrase) the accelerative absorption, of the bodily energies, the retardation of entropy, and the long battle against the cold and darkness which is death. With these weighty problems I am not for the moment concerned. My sole purpose is to correlate with mathematical statement and physical law certain of the simpler outward phenomena of organic growth and structure or form, while all the while regarding the fabric of the organism, ex hypothesi, as a material and mechanical configuration. This is my purpose here. But I would not for the world be thought to believe that this is the only story which Life and her Children have to tell. One does not come by studying living things for a lifetime to suppose that physics and chemistry can account for them all.4

Physical science and philosophy stand side by side, and one upholds the other. Without something of the strength of physics philosophy would be weak; and without something of philosophy’s wealth

1 Ektropismus oder die physikalische Theorie des Lebens (Leipzig, 1810).
3 The abundance of life, Proc. Roy. Soc. Dublin, 7 (1890); Scientific Essays (1915), pp. 60 seq.
4 That mechanism has its share in the scheme of nature no philosopher has denied. Aristotle (or whosoever wrote the De Mundo) goes so far as to assert that in the most mechanical operations of nature we behold some of the divinest attributes of God.
physical science would be poor. ‘Rien ne retirera du tissu de la science les fils d’or que la main du philosophe y a introduits.’1 But there are fields where each, for a while at least, must work alone; and where physical science reaches its limitations physical science itself must help us to discover. Meanwhile the appropriate and legitimate postulate of the physicist, in approaching the physical problems of the living body, is that with these physical phenomena no alien influence interferes. But the postulate, though it is certainly legitimate, and though it is the proper and necessary prelude to scientific enquiry, may some day be proven to be untrue; and its disproof will not be to the physicist’s confusion, but will come as his reward. In dealing with forms which are so concomitant with life that they are seemingly controlled by life, it is in no spirit of arrogant assertiveness if the physicist begins his argument, after the fashion of a most illustrious exemplar, with the old formula of scholastic challenge: \textit{An Vita sit? Dico quod non.}

The terms Growth and Form, which make up the title of this book, are to be understood, as I need hardly say, in their relation to the study of organisms. We want to see how, in some cases at least, the forms of living things, and of the parts of living things, can be explained by physical considerations, and to realise that in general no organic forms exist save such as are in conformity with physical and mathematical laws. And while growth is a somewhat vague word for a very complex matter, which may depend on various things, from simple imbibition of water to the complicated results of the chemistry of nutrition, it deserves to be studied in relation to form: whether it proceed by simple increase of size without obvious alteration of form, or whether it so proceed as to bring about a gradual change of form and the slow development of a more or less complicated structure.

In the Newtonian language of elementary physics, force is recognised by its action in producing or in changing motion, or in preventing change of motion or in maintaining rest. When we deal with matter in the concrete, force does not, strictly speaking, enter into the question, for force, unlike matter, has no independent objective existence. It is energy in its various forms, known or unknown, that acts upon matter. But when we abstract our thoughts from the material to its form, or from the thing moved to its motions, when

\footnote{1 J. H. Fr Papillon, \textit{Histoire de la philosophie moderne dans ses rapports avec le développement des sciences de la nature}, t (1876), 300.}