Analysis of Aircraft Structures Second Edition

As with the first edition, this textbook provides a clear introduction to the fundamental theory of structural analysis as applied to aircraft, spacecraft, automobiles, and ships. The emphasis is on the application of fundamental concepts of structural analysis that are employed in everyday engineering practice. All approximations are accompanied by a full explanation of their validity. Repetition is an important learning tool; therefore some redundancy is used to dispel misunderstanding. In this new edition, more topics, figures, examples, and exercises have been added. There is also a greater emphasis on the finite element method of analysis. Clarity remains the hallmark of this text.

Bruce K. Donaldson was first exposed to aircraft inertia loads when he was a carrierbased U.S. Navy antisubmarine pilot. He subsequently worked in the structural dynamics area at the Boeing Company and at the Beech Aircraft Corporation in Wichita, Kansas, before returning to school and embarking on an academic career in the area of structural analysis. He became a professor of aerospace engineering and then a professor of civil and environmental engineering at the University of Maryland. Professor Donaldson is the recipient of numerous teaching awards and has maintained industry contacts, working various summers at government agencies and for commercial enterprises, the last being Lockheed Martin in Fort Worth, Texas. He is the author of *Introduction to Structural Dynamics*, also published by Cambridge University Press.

Cambridge Aerospace Series

Editors: Wei Shyy and Vigor Yang

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: Aircraft Noise
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles of Space Instrument Design*
- 10. G. A. Khoury (ed.): Airship Technology, Second Edition
- 11. J. P. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, Second Edition
- 13. J. Katz and A. Plotkin: Low-Speed Aerodynamics, Second Edition
- 14. M. J. Abzug and E. E. Larrabee: *Airplane Stability and Control: A History of the Technologies that Made Aviation Possible*, Second Edition
- 15. D. H. Hodges and G. A. Pierce: *Introduction to Structural Dynamics and Aeroelasticity*, Second Edition
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. D. D. Knight: Elements of Numerical Methods for Compressible Flows
- 20. C. A. Wagner, T. Hüttl, and P. Sagaut (eds.): Large-Eddy Simulation for Acoustics
- 21. D. D. Joseph, T. Funada, and J. Wang: Potential Flows of Viscous and Viscoelastic Fluids
- 22. W. Shyy, Y. Lian, H. Liu, J. Tang, and D. Viieru: *Aerodynamics of Low Reynolds Number Flyers*
- 23. J. H. Saleh: Analyses for Durability and System Design Lifetime
- 24. B. K. Donaldson: Analysis of Aircraft Structures, Second Edition
- 25. C. Segal: The Scramjet Engine: Processes and Characteristics
- 26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures
- 27. A. K. Kundu: Aircraft Design
- 28. M. I. Friswell, J. E. T. Penny, S. D. Garvey, and A. W. Lees: *Dynamics of Rotating Machines*
- 29. B. A. Conway (ed): Spacecraft Trajectory Optimization
- 30. R. J. Adrian and J. Westerweel: Particle Image Velocimetry
- 31. G. A. Flandro, H. M. McMahon, and R. L. Roach: Basic Aerodynamics
- 32. H. Babinsky, and J. K. Harvey: Shock Wave-Boundary-Layer Interactions
- 33. C. K. W. Tam: Computational Aeroacoustics: A Wave Number Approach
- 34. A. Filippone: Advanced Aircraft Flight Performance

Analysis of Aircraft Structures

An Introduction

Second Edition

BRUCE K. DONALDSON, Ph.D.

Department of Civil and Environmental Engineering University of Maryland

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107668669

© Bruce K. Donaldson 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008 Reprinted 2012 First paperback edition 2012

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Donaldson, Bruce K.
Analysis of aircraft structures : an introduction / Bruce K. Donaldson. – 2nd ed.
p. cm.– (Cambridge aerospace series)
Includes bibliographical references and index.
ISBN 978-0-521-86583-8 (hardcover)
1. Airframes. 2. Structural analysis (Engineering) 3. Vehicles – Design and construction. I. Title.
TL671.6.D56 2008
629.134'31 – dc22 2008002226

ISBN 978-0-521-86583-8 Hardback ISBN 978-1-107-66866-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> TO MY WIFE, LOIS, AND CHILDREN, LEXA, SARA, AND KENNETH

Greek Alphabet

Forms	Name
Αα	alpha
Ββ	beta
Γγ	gamma
Δδ	delta
E ε	epsilon
Ζζ	zěta
Ηη	ěta
$\Theta \theta$	thěta
Iι	iota
Кк	kappa
Λλ	lambda
$M \mu$	mu
Νν	nu
Ξξ	xi
0 0	omicron
Ππ	pi
Ρρ	rhŏ
Σσ	sigma
Ττ	tau
Υυ	upsilon
$\Phi \phi$	phi
Χχ	chi
$\Psi\psi$	psi
Ωω	ŏmega

ix

Contents

Introduction to the First Edition List of Repeated Engineering Symbols		<i>page</i> xix xxi xxv xxxiii	
Pa	rt I	The Fundamentals of Structural Analysis	
	I.1 I.2 I.3 I.4 I.5	Summary of Newton's Method for Finding Roots	1 2 2 3 4
1	Stre	ess in Structures	5
	1.1 1.2 1.3 1.4 1.5 Cha	Equilibrium at the Outer or Inner Boundary Plane Stress	5 12 19 23 27 29
2	Stre	esses and Coordinate Axis Rotations	38
		Stress Values in Other Cartesian Coordinate Systems The Determination of Maximum Stress Values Mohr's Circle A Three-Dimensional View of Plane Stress	38 38 43 47 52 53 59 59 62 63 67
3	Dis	placements and Strains	68
	3.1 3.2 3.3 3.4 3.5 3.6	Longitudinal Strains	68 68 69 77 79 80

xii		Contents
	 3.7 The Compatibility Equations 3.8 Plane Strain 3.9 Summary Chapter 3 Exercises Endnote (1) The Derivation of the Strain–Displacement Equations for Cylindrical Coordinates Endnote (2) A Third Derivation of the Compatibility Equations 	81 85 86 87 89 90
4	Strains in Rotated Coordinate Systems	95
	 4.1 Introduction 4.2 Strains in Other Cartesian Coordinate Systems 4.3 Strain Gauges 4.4 The Mathematical Properties of Strains 4.5 Summary Chapter 4 Exercises 	95 95 98 102 102 105
5	The Mechanical Behavior of Engineering Materials	109
	 5.1 Introduction 5.2 The Tensile Test 5.3 Compression and Shear Tests 5.4 Safety Factors 5.5 Factors Other than Stress That Affect Material Behavior 5.6 **Biaxial and Triaxial Loadings** 5.7 Simplifications of Material Behavior Chapter 5 Exercises Endnote (1) Residual Stress Example Problem Endnote (2) Crack Growth Example 	109 116 124 125 127 136 138 140 143 144
6	Linearly Elastic Materials	146
	 6.1 Introduction 6.2 Orthotropic Materials 6.3 Isotropic and Other Linearly Elastic Materials 6.4 The Plane Stress Constitutive Equations 6.5 **Applications to Fiber Composites** 6.6 Summary Chapter 6 Exercises Endnote (1) Negative Poisson Ratios 	146 148 153 157 157 159 160 163
Pa	rt II **Introduction to the Theory of Elasticity**	
	II.1 Introduction	165
7	The Theory of Elasticity	167
	 7.1 Introduction 7.2 A Theory of Elasticity Solution Using Stresses 7.3 A Theory of Elasticity Solution Using Displacements 7.4 Reprise 7.5 Summary Chapter 7 Exercises Endnote (1) General Problem Formulations 	167 168 173 177 181 181 181

Ca	ontents	xiii
	Endnote (2) Another Solution to the Disk Displacement Equation	190
	Endnote (3) Example 7.1 Compatibility Equation	190
8	Plane Stress Theory of Elasticity Solutions	192
	8.1 Introduction	192
	8.2 Solution Examples	192
	8.3 St. Venant's Principle	198
	8.4 **Review Problem**	199
	8.5 Summary8.6 **The Airy Stress Function**	202 202
	8.6 **The Airy Stress Function** Chapter 8 Exercises	202 204
	Endnote (1) An Example of Calculating Displacements	204
	from a Stress Solution	209
Pa	rts I and II Review Questions	211
Pa	rt III Engineering Theory for Straight, Long Beams	
	III.1 Aircraft and Other Vehicular Structures	219
	III.2 The Method of Undetermined Coefficients	221
	III.3 Linear Independence	223
	III.4 The Mean Value Theorem	224
9	Bending and Extensional Stresses in Beams	225
	9.1 Introduction	225
	9.2 An Elaboration on the Scope of Strength of Materials	226
	9.3 Stress Resultants	227
	9.4 The Approximate Pattern for Beam Displacements9.5 The Accuracy of the Beam Stress Equation	230
	9.5 The Accuracy of the Beam Stress Equation9.6 Calculation of the Area Properties of the Nonhomogeneous	238
	Cross-Section	241
	9.7 Calculation of Equivalent Thermal Loads	249
	9.8 Principal Axes for the Beam Cross-Section	252
	9.9 Summary	254
	Chapter 9 Exercises	259
	Endnote (1) The Predominance of the Normal Axial Stress	268
	Endnote (2) Schwartz's Inequality	270
10	Beam Bending and Extensional Deflections	271
	10.1 Introduction	271
	10.2 The Small Deflection Beam Equilibrium Equations	272
	10.3 Nonlinear Beam Equilibrium Equations	274
	10.4 Boundary Conditions and the Boundary Value	202
	Problem 10.5 Uncoupled Forms of the GDEs and the BCs	282 285
	10.6 Solutions for Beam Deflection Problems	285
	10.7 Summary	200
	Chapter 10 Exercises	300
	Endnote (1) Different BCs in Different Planes at the Same Beam End	305
	Endnote (2) The Nonlinear Form of the Axial Deflection Equation	306

xiv	Contents
Endnote (3) The Presence of the Moment per Unit Length Term Force Boundary Condition Expressions Endnote (4) Exact Integrations for a Nonuniform Beam	as in the Shear 307 307
11 Additional Beam Bending Topics	310
 11 Additional Beam Bending Topics 11.1 Introduction 11.2 The Concept of Elastic Boundary Conditions 11.3 Elastic Support Boundary Conditions 11.4 Concentrated and Partial Span Loads 11.5 Partial Span and Concentrated Load Example Problems 11.6 Introduction to Beam Buckling 11.7 **Additional Comments on Beam Buckling** 11.8 Summary Chapter 11 Exercises Endnote (1) The Bending Slope Sign Convention Endnote (2) Combined Beam Axial and Lateral Loadings Endnote (3) Heaviside Step Function Additional Comments Endnote (4) Combined Bending and Torsional Loadings Endnote (5) Beams Continuous over Several Supports 	310 310 310 312 316 320 329 334 336 346 359 359 359 363 364 364
12 Uniform Torsion of Beams	368
 12.1 Introduction 12.2 The Stress Formulation for Uniform Torsion 12.3 Further Properties of the Prandtl Stress Function 12.4 The Membrane Analogy 12.5 Closed Form Beam Torsion Analytical Solutions 12.6 Open Form Uniform Beam Torsion Solutions 12.7 Summary Chapter 12 Exercises Endnote (1) A Comment on the Solution for a Circular Shaft wi Endnote (2) Orthogonality Endnote (3) A Separation of Variables Approach to Example 12 	368 369 376 378 382 387 391 396 ith a Keyway 400 400
13 Beam Torsion Approximate Solutions	403
 13.1 Introduction 13.2 Open Cross-Section Beam Torsion 13.3 Closed Section Beam Torsion 13.4 Accuracy of the Uniform Torsion Theory 13.5 Beams Subjected to a Variable Torque 13.6 Summary Chapter 13 Exercises Endnote (1) Torsion Constants for Rolled and Extruded Beams Endnote (2) Warping Constraint Due to Varying Torque Beam Bending and Torsion Review Questions 	403 404 410 420 421 424 426 430 433 434
14 Beam Shearing Stresses Due to Shearing Forces	444
 14.1 Introduction 14.2 Thin-Walled Open Cross-Sections 14.3 Thin-Walled Open Cross-Section Example Problems 	444 444 448

Contents		XV
14.5 14.6 Chap	The Open Section Shear Center Shear Flows in Thin-Walled Closed Cross-Sections Summary ter 14 Exercises ote (1) The Shear Center as the Center of Twist	457 459 464 469 473
Part IV	Work and Energy Principles	
IV.1 IV.2	Preface The Green–Gauss Theorem	475 475
15 Work	and Potential Energy Principles	479
15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 Chap Endn Endn Co Endn		479 481 483 486 490 495 497 502 504 506 507 510 514 516
	ote (4) Derivation of the Uniform Torsion Beam Equations Using the inciple of Complementary Virtual Work	518
Part V	Energy-Based Numerical Solutions	
V.1	Preface	521
16 **Pre	ecursor Numerical Analyses**	523
16.1 16.2 16.3 Chap	Introduction Numerical Methods of Note Summary ter 16 Exercises	523 523 540 542
17 Introd	duction to the Finite Element Method	545
17.3 17.4 17.5 17.6 17.7 17.8	Introduction Generalized Coordinates The Beam Bending Finite Element The Bar and Spring Element Stiffness Matrix Equations Assembling the System Matrix Equation Solving the System Matrix Equation Example Beam Frame and Grid Problems More Extensive Example Problems Summary	545 546 551 556 558 565 567 574 581

xvi	Contents
Chapter 17 Exercises Endnote (1) Distributed Coordinates Endnote (2) Accuracy of the Concentrated Load Appro- Endnote (3) The Reason for the Name "Generalized Co	
18 Finite Element Truss Problems	602
 18.1 Introduction 18.2 The Rotated Bar Element 18.3 Equivalent Thermal Loads 18.4 Other Initial Strains 18.5 Enforced Deflections 18.6 Summary Chapter 18 Exercises Endnote (1) Substructuring in Static Analyses 	602 602 607 610 611 612 617 620
19 Basic Aspects of Multidimensional Finite Elements	623
 19.1 Introduction 19.2 A Rectangular Plane Stress Finite Element 19.3 A Triangular Plane Stress Element in Brief 19.4 Three-Dimensional Finite Elements 19.5 Refined Finite Elements of Simple Shapes 19.6 **The Finite Element Method with Time-Varying 19.7 Summary Chapter 19 Exercises Endnote (1) An Explanation for Rigid Body Motion-Indernation Endnote (2) Reducing the Number of DOF in a Dynamical 	649 650 duced False Strains 653
20 The Unit Load Method for Determinate Structures	655
 20.1 Introduction 20.2 External Complementary Virtual Work in the Un 20.3 Internal CVW for Beam Bending and Extension 20.4 Internal Complementary Virtual Work for Beam 20.5 **Internal CVW for Beam Shearing** 20.6 Additional Illustrative Examples 20.7 **Examples of Using the ULM for Design Purpor 20.8 **General Deflection Solutions** 20.9 **Large Radius Curved Beams** 20.10 Summary 20.11 Maxwell's Reciprocity Theorem Chapter 20 Exercises Endnote (1) ULM Limitations Endnote (2) Internal Complementary Virtual Work 	658 Torsion 667 669 670
21 The Unit Load Method for Indeterminate Structures	700
 21.1 Introduction 21.2 Identifying Redundant Forces and Moments 21.3 The Coiled Spring Structural Elements 21.4 The Strategy of Releases and Reattachments 21.5 Example Problems 	700 700 704 707 711

Contents	,	xvii
21.6 21.7 Chap	**Further Example Problems** Summary oter 21 Exercises	724 729 737
Parts IV	and V Review Questions	747
Part VI	Thin Plate Theory and Structural Stability	
VI.1	Introduction	757
22 Thin	Plate Theory	759
22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 22.10 Chap	**Plate Buckling and Its Uses**	759 760 761 763 766 770 773 777 781 788 788 788 788 791
23 Elast	ic and Aeroelastic Instabilities	792
23.2 23.3 23.4 23.5 23.6 23.7 23.8 Chap Endr	Introduction An Energy Formulation of the Beam Buckling Problem A Beam Buckling Finite Element Further Aspects of the Energy Formulation Types of Fluid–Structure Interaction Instabilities Airfoil Divergence Airfoil Flutter Matrix Iteration for Symmetric Matrices oter 23 Exercises note (1) Resonance note (2) Diagonalization and Functions of Matrices	 792 792 795 800 806 808 814 820 829 831 833
Appendi. A.1 A.2 A.3	x A: Additional Topics Integration of the Strains to Obtain Displacements Proof of the Symmetry of the Compliance Matrix Uniform Torsion Stress Resultants for Multiply Connected	839 839 841
A.4 A.5	Cross-Sections The Uniform Torsion GDE for Multiply Connected Cross-Sections Calculation of the Twist per Unit Length of a Single Cell of an <i>N</i> -Cell Cross-Section	846 848 850
Appendi. Referenc Index	x B: Selected Answers to Exercises	851 925 929

Introduction to the Second Edition

In an attempt to improve the first edition, more topics, figures, examples, and exercises have been added. The author hopes all the old errors have been removed and few new errors have been introduced. The primary change has been a greater emphasis on preparing the student for a broad understanding of the finite element method of analysis. In the author's experience, various finite element method software packages are almost, if not totally, the only means of structural analysis used today in the aerospace industry and in the associated federal and state government agencies. The three chapters dealing with the finite element method of analysis, Chapters 16, 17, and 18, are hopefully just the right amount of exposure suitable for undergraduates.

The style of presentation has remained the same. Clarity rather than brevity has been the consistent goal. Hence, there is a purposeful use of extra words and sentences in order to try to assist the reader who is new to the material. This strategy of being wordy admittedly makes this textbook less useful as a reference for the instructor who already is quite familiar with the chosen material. Perhaps this wordiness will allow that instructor the luxury of being brief in his or her lectures, knowing that this textbook is available as a backup to those lectures.

The author would appreciate any suggestions or corrections. He can be reached at bkdonaldson@verizon.net.

B. D.

Introduction to the First Edition

This text has a single purpose. That purpose is to provide clear instruction in the fundamental concepts of the theory of structural analysis as applied to vehicular structures such as aircraft, automobiles, ships, and spacecraft. To this end, the text offers explanations and applications of the fundamental concepts of structural analysis and indications of how those concepts are employed in everyday engineering practice. The text endeavors to foster in the reader the habit of asking questions until the reader is thoroughly clear on all important details within the scope of this text.

Three strategies are followed to achieve clarity with regard to the basic concepts of structural analysis. The first strategy is to be thoroughly logical within the scope of the presented material. No "assumptions" with regard to method of analysis are made anywhere in this textbook. All approximations are accompanied by a full explanation of their validity. The second strategy is to be repetitious and redundant. Repetition is an important learning tool, and redundancy dispels misunderstandings. The third strategy to obtain the goal of clarity is to limit the number of topics covered in detail in this text to only those that are essential to an introduction to modern structural analysis.

This text is meant to serve as a basis for, or a supplement to, a series of introductory courses for undergraduates. It may be necessary to justify beginning a course of undergraduate study with the mathematics-encumbered elements of the theory of elasticity. If so, note that for an engineer to properly use any method of structural engineering analysis, that engineer must understand both the breadth and the limitations of that method of analysis. Such knowledge is invariably based, at least in large part, upon a derivation of the method in question. A background in the elements of the theory of elasticity is essential to interpreting the choices made in a structural analysis derivation with respect to the applicability of the result. The challenge posed to undergraduates by the theory of elasticity is further justified by the fact that the need to achieve vehicular structural components that are as lightweight and as easy to manufacture as possible requires an accuracy of analysis that is only possible with sophisticated, modern methods of analysis. The theory of elasticity is the one basis of that sophistication.

The educational price to be paid for the more encompassing view of structural mechanics made possible by means of an introduction to the theory of elasticity and a more rigorous introduction to work and energy methods is the loss of time for repetition of structural analysis solution techniques. This loss of repetition quite often means that students quickly forget what structural mechanics theory and solution techniques they quickly learned in their undergraduate courses. This fact, and the additional, more advanced material scattered throughout the text, make this text also suitable as a basis for, or supplement to, first-year graduate courses.

The organization of the text is largely conventional. Part I provides an introduction to structural mechanics and a single, logical basis for proceeding through the remaining parts of the text. Part II combines the separate topics of Part I to offer a brief introduction to the theory of elasticity at as close to an elementary level as possible. Part III develops the strength of materials approach to elementary straight-beam theory. Part IV introduces

xxi

xxii

Introduction to the First Edition

work and energy principles, and Part V offers the unit load and finite element methods of analysis as two distinct types of work or energy methods. The development of the finite element method is limited to only that material which is suitable as an introduction to the topic. Part III and Parts IV plus V can be studied sequentially or concurrently, or their order can be interchanged if the reader/student has some knowledge of beam theory such as that normally obtained from a prior course in strength of materials. A full undergraduate use of Parts I and II together, and Part III, requires something more than one semester each, while Parts IV plus V, through Chapter 21, requires about one semester. Time pressure to meet this undergraduate semester schedule requires omitting some parts of this textbook and very quick treatment of the more advanced chapters that are heavy with theory, such as Chapter 15. Undergraduates, like the rest of us, often only develop an interest in the details of a theory after enjoying its applications. If this textbook is used to instruct junior-year students, then the teaching schedule may omit more topics (even most of some chapters such as Chapters 7 and 8) than would be proper for more advanced students. The purpose of Part VI is to make the textbook more useful for those curriculums that include (i) some plate theory or aeroelasticity and (ii) a more in-depth look at elastic stability than is incorporated in the last of the three beam bending chapters. Most advanced topics of interest to graduate students are located in sections that are identified by a double asterisk, or relegated to endnotes and the more difficult exercises, and Appendix A.

In order to use this text effectively, the reader is expected to have the knowledge base that is usually obtained by completing (i) three semesters of college-level analytical geometry and the calculus, one semester of linear algebra, and an additional course in ordinary differential equations; and (ii) courses of study concerning engineering statics and dynamics. The required mathematics cited above is often a stumbling block for students. It is good for all students to realize that this body of mathematics is the tool that makes modern structural engineering methods both possible and comprehensible. In other words, understanding mathematics makes engineering easy. This text uses only the above-cited body of mathematics to formulate the engineering concepts presented herein. Occasionally a more elegant mathematical tool will be mentioned but not used. The mention of a more elegant mathematical tool is made only in order to prepare the reader for future professional growth. When a mathematical tool at the edge of the reader's assumed knowledge base is used, a brief review of that technique is provided in the preface to the part of the textbook in which its use is first encountered. While highly desirable as further practice in summing forces and moments for structural bodies, a prior course in strength of materials is not strictly necessary. However, the absence of sufficient prior drill in summing forces and moments means that that drill would have to be inserted into this study program.

Reference numbers are enclosed within brackets, and endnotes are enclosed within parentheses. The matrix and determinant symbols used are

- [] is a square or rectangular matrix
- {} is a column matrix, often called a vector
- [] is a row matrix, also sometimes called a vector
- | | is a determinant
- $[]^{\mathbf{t}}$ is the transpose of the original matrix
- $[]^{-1}$ is the inverse of the original matrix

A \blacksquare is used to indicate the end of an example problem.

Finally, since this text is almost exclusively devoted to explaining the methods needed for the analysis of the structural portion of whatever system is under study, it is appropriate Introduction to the First Edition

xxiii

to mention briefly the other activities that are also essential parts of the process of creating a land, marine, or flight vehicle. Analysis is but one part of the continuous product production chain – marketing to design to analysis to manufacturing to testing, and back to marketing. The above activities are somewhat ordered in time as stated. However, for any complex product, each activity is linked with every other activity with considerable overlap. In particular, the people responsible for the design and analysis activities work interactively in order to achieve better products. Expert analysis is an essential part of any vehicular design today.

List of Repeated Engineering Symbols

a	The vector of acceleration
a, b, c	Lengths; with subscripts, series coefficients
a	Distance aft from midchord to the elastic axis as a fraction of the semi-
	chord length, b
a	An arbitrary parameter
b	Width (Parts II–VI) or depth (Part I) of a rectangular beam cross-section;
	y axis intercept of a straight line; semichord length, $\frac{1}{2}c$
с	Airfoil chord length, 2b
C _{mn}	Double Fourier series coefficients used in the solution for the twisting
	of a uniform beam with a rectangular cross-section
C_{nx}, C_{ny}, C_{nz}	The three direction cosines for the normal to a plane; that is, the respec-
	tive cosines of the angles between the normal direction and the Cartesian
	coordinate axes; entirely equivalent to lower-case ν with single coordi-
	nate subscripts
C_{XZ}	Typical coordinate rotation direction cosine, which, in this case, is the
	cosine of the angle between the (rotated) x^* Cartesian coordinate axis
	and the (original) z Cartesian coordinate axis. The first subscript always
	indicates the rotated coordinate system axis, while the second sub-
	script always indicates the original coordinate system axis. See the next
	entry.
[<i>c</i>]	Three by three matrix of direction cosines of a rotated coordinate system
	arranged so that the first element subscript indicates the row number and
	the second element subscript indicates the column number
d_0, D_0	A rectilinear deflection of a structural support causing the structure to
07 0	deform
е	A distance from some reference point; that is, an eccentricity; chord
	length distances, dimensional or nondimensional
e_{v}, e_{z}	Rectilinear distances to the beam cross-section shear center from an
<i>v</i> -	arbitrarily chosen moment center; these distances respectively parallel
	the <i>y</i> and <i>z</i> coordinate axes, and they are without a sign convention
f	Vibratory frequencies in units of cycles per second $=$ Hz
f, f	Arbitrary function
f_0	A magnitude associated with an applied force per unit length of beam
	axis, or an applied force per unit area in the case of a plate analysis
f_x, f_y, f_z	Externally applied force components per unit length applied along the
	beam centroidal axis in the respective coordinate directions of the sub-
	scripts, or similar forces per unit area applied at a plate midplane
f_{ij}	The <i>i</i> , <i>j</i> flexibility coefficient; sometimes called the <i>i</i> , <i>j</i> flexibility influ-
	ence coefficient
[<i>f</i>]	Flexibility influence coefficient matrix; that is, the array of f_{ij}
8	Acceleration of gravity; damping factor; arbitrary function

xxv

xxvi	List of Repeated Engineering Symbols
h	Depth of rectangular beam cross-section; plate thickness
h(t)	Downward deflection of an airfoil
[<i>h</i>]	Elastic stability matrix defined in Chapter 23, which has as a factor the unknown value of the compressive load that causes buckling
i	Square root of -1
i, j, k	Integer indices
k	Spring constant/factor [units of force over length]; plate buckling coef- ficient defined in Example 22.4
k _{ij}	The i , j element of a stiffness coefficient matrix. It represents the value of the <i>i</i> th generalized external force required by a unit value of the <i>j</i> th generalized deflection (i.e., generalized coordinate) when all other generalized deflections are zero
[k]	Element stiffness coefficient matrix whose square size depends upon the number of generalized coordinates required, perhaps approximately, to uniquely specify the structural element deflections
$[\tilde{k}]$	Element stiffness matrix reduced in size by the application of the global
	or system boundary conditions to the element degrees of freedom
l	Length of beam finite element, usually a fraction of the total beam length; beam length
т	A discrete mass; slope of a straight line
m_y, m_z	Applied beam moments per unit length
<i>m</i> , <i>n</i>	Integers or integer indices, sometimes maximum values for the indices i, j, k
n, s	Respective normal and tangential orthogonal coordinates at any point along a line on a flat surface. When the curve is a closed curve, s is positive counterclockwise, and n is positive in the outer normal direction
p	Pressure on the surface of a structural body
q	Shear flow; that is, the product of (i) the shearing stress on the surface of the beam cross-section in the direction of the centerline of the thin skin and (ii) the thickness of the thin skin
9	Fluid dynamic pressure equal to one-half the fluid mass density multi- plied by the fluid velocity squared
q_i	The <i>i</i> th generalized coordinate
$\{q\}$	Column matrix of generalized coordinates; specifically, without modifi- cation, the element degrees of freedom of a finite element; with a ^, the structural system degrees of freedom; with a ~, the DOF vector reduced by use of the system boundary conditions (later the tildes are dropped from use)
r	Radial coordinate of a cylindrical or spherical coordinate system, or a moment arm for shear flows and shearing stresses about an arbitrary moment center
r	Position vector from the coordinate origin to the geometric point under consideration
$[r(\theta)]$	A coordinate rotation matrix for strains; see Eq. (6.15)
s	Arc length coordinate, usually with an arbitrary origin; also see state-
stp(x x)	ment regarding n , s Heavierde (unit) step function: see Section 11.4
$ stp(x - x_0) \\ t $	Heaviside (unit) step function; see Section 11.4 Thickness; the addition of an asterisk indicates a modulus weighted thickness, $(G/G_0)t$, in the case of beam torsion

CAMBRIDGE

xxvii

t, t_0	Time, as a variable and as a parameter
u, v, w	Orthogonal displacement components of a material point within or on
	the surface of a structural body, hence a function of all three spatial
	coordinates, and perhaps time also
u, v, w	Deflections of points along the beam axis, hence a function only of x
	and perhaps time also; similarly for a plate midplane, as functions of
	x, y and perhaps t
$\tilde{u}, \tilde{v}, \tilde{w}$	Known orthogonal components of displacements on the surface of a
,,	structural body; that is, displacement boundary conditions
u_i, v_i, w_i	Finite element DOF; modified with ^, structural system DOF; modified
	with ~, structural system degrees of freedom retained after application
	of system boundary conditions
<i>x</i> , <i>y</i> , <i>z</i>	Cartesian coordinates that locate material points before or after defor-
λ, γ, ζ	mation
<i>y</i> , <i>z</i>	Coordinates of a beam cross-section originating at the centroid
y_{0}, z_{0} y_{0}, z_{0}	Coordinates for a beam cross-section with an arbitrarily selected origin
A	Cross-sectional area of a beam
Â	Area enclosed within the centerline of a thin, closed beam cross-section
A_x, A_y, A_z	Areas perpendicular to the x , y , z axes, respectively
$\{A\}$	$[E]{\alpha}$, a vector associated with thermal strains and the resulting
(**)	stresses
$[\mathcal{A}]$	One of several aerodynamic matrices in Chapter 23
[A], [B]	Arbitrary square matrices
A_i, B_i, C_i, D_i	Constants of integration
A, B	Arbitrary vectors
ALS	Abbreviation for "actual load system"; the system of externally applied
	loads and the corresponding internal stress resultants induced by the
	applied loads as used by the unit load method for calculating unknown
	or known deflections
В	With coordinate subscripts, the body force per unit mass in the indicated
	coordinate direction
[<i>B</i>]	Coefficient matrix for finite element degrees of freedom in the expres-
	sion for the intraelement strains
BC	Abbreviation for "boundary condition"
[C]	Damping coefficient matrix used to represent velocity-dependent forces
C_l	Lift coefficient; an empirical factor, which, when multiplied by the fluid
	dynamic pressure and a relevant area, yields the lift component of the
	total aerodynamic force [nondimensional]
C_{llpha}	
C _{lα}	total aerodynamic force [nondimensional]
C_{llpha} C_m	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which,
	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and
	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and an appropriate moment arm, yields the moment acting upon an airfoil
C _m	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and an appropriate moment arm, yields the moment acting upon an airfoil at the aerodynamic center
	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and an appropriate moment arm, yields the moment acting upon an airfoil at the aerodynamic center Centerline of symmetry
C_m \mathbb{C} D	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and an appropriate moment arm, yields the moment acting upon an airfoil at the aerodynamic center Centerline of symmetry Diameter
C_m \mathbb{C} D D	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and an appropriate moment arm, yields the moment acting upon an airfoil at the aerodynamic center Centerline of symmetry Diameter Plate bending stiffness coefficient equal to $Eh^3/[12(1 - \nu^2)]$
C_m \mathbb{C} D D D	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and an appropriate moment arm, yields the moment acting upon an airfoil at the aerodynamic center Centerline of symmetry Diameter Plate bending stiffness coefficient equal to $Eh^3/[12(1 - v^2)]$ The total displacement vector whose components are u , v , and w
C_m \mathbb{C} D D	total aerodynamic force [nondimensional] Lift curve slope; that is, the slope of the straight-line portion of the curve on the plot of lift coefficient (C_l) versus angle of attack (α) Aerodynamic moment coefficient; that is, an empirical factor, which, when multiplied by the fluid dynamic pressure, an appropriate area, and an appropriate moment arm, yields the moment acting upon an airfoil at the aerodynamic center Centerline of symmetry Diameter Plate bending stiffness coefficient equal to $Eh^3/[12(1 - \nu^2)]$

xxviii	List of Repeated Engineering Symbols
%D	Percent fatigue damage as represented by the Palmgren–Miner rule of Eq. (5.2), with 100-percent damage indicating a 50-percent probability of fracture failure as a result of a disordered sequence of loading cycles
[D]	The dynamic matrix; see Eq. (23.18)
Ε	Young's modulus, the modulus of elasticity; coordinate subscripts indi- cate the direction in which this material property is measured; the lack of a subscript indicates an isotropic material
E_0	Reference value for Young's modulus, chosen arbitrarily in order to pro- duce more natural units for quantities useful in beam bending analyses
[<i>E</i>]	The material stiffness matrix that, when postmultiplied by the strain vector, often provides the stress vector
F	Applied force, often with numerical subscripts
F	A force vector
F, G, H FEM	Arbitrary functions Abbreviation for "finite element method"; see Chapter 17 and sub-
I LIVI	sequent chapters
G	Shear modulus, the modulus of rigidity; double coordinate subscripts indicate that the shear modulus is referred to the material axes of an orthotropic material
G_0	Reference value for the shear modulus, akin to E_0
GDE	Abbreviation for "governing differential equation"
[<i>H</i>]	The assembled elastic stability matrix, see Example 23.1
Ī	An integral
\bar{I} I_x, I_y, I_z I_{yy}, I_{zz}	Moments or product of inertia about the sub-area centroid Mass moments of inertia about the axis indicated by the subscript Area moments of inertia for a beam cross-section about the y and z axes, respectively, see Eqs. (9.6)
$egin{array}{c} I_{yz} \ J \end{array}$	Area product of inertia for a beam cross-section, see Eqs. (9.6) The St. Venant constant for uniform beam torsion, which is calculated on the basis of the classification of the type of beam cross-section; an asterisk indicates that <i>J</i> is modulus weighted
Κ	Torsional spring constant or factor; units of force length, with various subscripts; in-plane plate stiffness coefficient
K _t	Stress concentration factor; the t subscript indicates that the factor is theoretical
[<i>K</i>], [<i>Ř</i>]	Structural stiffness matrix assembled from element stiffness matrices, after the application of the global or system boundary conditions; the tilde is omitted in later equations when it is clear that the stiffness matrix is associated with only the unknown degrees of freedom
$[\hat{K}]$	Singular structural stiffness matrix assembled from the element stiffness matrices, before the application of the global boundary conditions
L	Beam length; or length, in general
L	Lift force; that is, the component of the net aerodynamic force acting upon an airfoil or other solid body perpendicular to the direction of the motion of the body or the fluid stream. (The drag is the force component in the direction of the fluid stream.) For an airfoil, the lift force acts at the airfoil aerodynamic center.
Μ	Often with subscripts $0, 1, 2, \ldots$, bending or twisting moment applied to beam or other structures
M	Aerodynamic moment at the airfoil aerodynamic center

xxix

$M_t(x)$	Internal beam twisting moment at the beam cross-section identified by the coordinate <i>x</i>
M_x, M_y	When functions of x , y : plate bending moments about the y , x axes, per unit length along the y , x axes, respectively; units of [force]
M_y, M_z	When functions of x only: internal beam bending moments about the y and z axes, respectively, at the beam cross-section identified by the coordinate x
$M_{xy}(x, y)$	Plate twisting moment about the <i>x</i> axis per unit length in the <i>y</i> coordinate direction; units of [force]
$M_{yx}(x, y)$	Plate twisting moment about the <i>y</i> axis per unit length in the <i>x</i> coordinate direction; units of [force]
[<i>M</i>]	Mass matrix in the system matrix equations of motion, which, when postmultiplied by the negative of the acceleration vector, produces the system inertia forces
N, N_0	Applied beam axial force, or, more generally, a force normal to a spec- ified plane in space
N(x)	Internal beam axial force acting at the beam cross-sectional centroid, positive in tension
N _i	The number of fatigue cycles to failure for a single specified mean and alternating stress; or, when a function of one or more spatial coordinates, the deflection shape function associated with the <i>i</i> th structural element generalized coordinate
N_x, N_y	Internal or externally applied tensile or compressive forces that act in the indicated coordinate direction per unit length in the other coordinate direction and that lie within the midplane of a membrane or plate; units of [force/length]; or, more generally, a force acting on a plane in the coordinate subscript direction
N_{xy}, N_{yx}	Internal or externally applied shearing forces per unit length that lie within the midplane of a membrane or plate, and that follow the same sign convention as do shearing stresses; units of [force/length]
O, P, Q, R, S P	Points in the volume of the structural body Replacement symbol for $N(x)$ when the axial force in the beam is
-	negative, that is, a compressive beam loading
Q_i	The <i>i</i> th generalized force, which is determined by use of the virtual work expression in conjunction with a variation of the <i>i</i> th generalized coordinate
$Q_y(s), Q_z(s)$	First moments of those portions of the beam cross-sectional area that lie behind the point <i>s</i> on the thin-beam centerline
Q_x, Q_y	Plate internal shear forces acting in the thickness direction, per unit length in the <i>y</i> , <i>x</i> directions, respectively; units of [force/length]
$\{Q\}$	Column matrix of generalized forces
R R	A fixed radius; a force or moment reaction at a support With two coordinate subscripts, ratios of inertia defined by Eqs. (10.6)
$[R(\theta)]$	A coordinate rotation matrix for stresses; see Eq. (6.14)
S	Beam–column slenderness ratio; an airfoil planform area
<i>S</i> ₁ , <i>S</i> ₂	Surface areas for a structural body; subscript 1 indicates an area where forces/tractions, rather than deflections, are prescribed, and subscript 2 indicates the opposite
[<i>S</i>]	The material compliance matrix, which, when postmultiplied by the stress vector, produces the strain vector; see Eq. (6.1)

xxx	List of Repeated Engineering Symbols
Т	Either (i) kinetic energy; or (ii) a torque; or (iii), when modified by subscripts, and so on, a specified temperature change
T_x, T_y, T_z	Surface tractions (forces per unit area) acting upon the surface of the structural body in the x , y , and z directions, respectively
$\{T\}$	The vector of surface tractions
[T]	A rectangular transformation matrix between two sets of generalized coordinates
T	A twisting moment of aerodynamic origin
U	Total strain energy of a structural body
U_0	Strain energy density; that is, the strain energy per unit volume
ULM	Abbreviation for the "unit load method"; see Chapters 20 and 21
ULS	Abbreviation for a "unit load system"; a system of self-equilibrated virtual forces and virtual moments used by the ULM to calculate known or unknown actual deflections
Vol.	Volume
V	Potential function for body forces per unit volume; see Eq. (8.10); with an upper bar, a similar potential function in plate theory
V	Potential energy of the externally applied loads that are the surface tractions and the body forces
V_y, V_z	Internal shear forces acting upon a beam cross-section in the indicated coordinate directions
V_x, V_y	Kirchhoff plate shearing forces that are important to plate boundary conditions. They are a combination of the ordinary plate shearing forces per unit length and derivatives of the twisting moment; see Fig. 22.3
W	Total work, that is, the work done by both the external and internal forces acting upon a structure
W_{ex}	Work done by the external forces acting upon a structure
W_{in}	Work done by the internal forces acting upon a structure
Χ, Υ	x/a, y/b , respectively, nondimensional Cartesian coordinates used in certain finite element derivations
Y, Z	The principal centroidal coordinates of a beam cross-section (used only when a clear distinction is useful)
α	An angle, sometimes specifically the angular coordinate of the cylindri- cal coordinate system when θ has another meaning in the same analysis; an airfoil angle of attack; or a nondimensional factor
α	The coefficient of thermal expansion; coordinate subscripts indicate the material direction for which this material property is measured
<i>{α}</i>	The 6×1 vector of the coefficients of thermal expansion for each of the three coordinate directions, plus three zeros; or the corresponding 3×1 plane stress vector
α, β	Factors, depending upon the aspect ratio of the rectangular beam cross- section, that arise from the calculation of the maximum shear stress and the St. Venant constant for uniform torsion, respectively
β	An angle, or a nondimensional or other parameter
γ	A nondimensional factor for the beam cross-sectional stiffness for shear- ing deformation γGA ; see Section 20.5
γ	An engineering shearing strain, usually with two different coordinate subscripts; that is, the change in the original right angle defined by the two subscripted coordinates as a result of structural deformation