
PART I

THE FUNDAMENTALS OF STRUCTURAL
ANALYSIS

 The Theory of Elasticity – 
The Foundation for All Structural Analysis
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I.1 An Overview of Part I

Vehicular weight, particularly that of aircraft and spacecraft, has a strong effect
on the performance or economics of all such vehicles. Thus it is well worth spending
many engineering man-hours on their design and analysis so as to make those vehicles as
light-weight as possible. To make those many engineering hours of analysis as effective as
possible, it is important that all the different types of loads that the vehicle will bear be well
estimated, and then the structural response to those loads be carefully calculated. To carefully
calculate the response of structures to estimated or measured loadings, it is important to
use structural analysis techniques to which considerable confidence can be assigned. High
degrees of confidence are achieved through experience and through thorough understanding
of any approximations that are incorporated within the derivations of the selected structural
analysis techniques. Thus it would seem that, in general, the fewer and the smaller the
approximations, the more useful the structural analysis technique. This surmise is only
partially true. As will be seen as the material of this textbook unfolds, the use of structural
analysis techniques that contain essentially no approximations for many circumstances
can be much too expensive and time consuming. Hence a compromise between cost and
accuracy is necessary for good engineering practice. To understand how that compromise is
found, this introduction to aerospace structures begins with the fundamentals of structural
mechanics where the approximations are few in number and small in impact.
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2 The Fundamentals of Structural Analysis

Part I of this textbook presents structural mechanics on a differential scale. That is, the
focus of the analysis is typically on a volume of engineering material whose rectangular
volume is dx dy dz. The enormous advantage of this approach is that the equations that are
so established by this process apply to any type of component (beam, shell, solid) of any
engineering structure simply because such a differential volume can be visualized as being
part of the finite volume of that type of structural component. The frequent use of differential
distances like dx should suggest that the calculus, a powerful analytic tool, figures promi-
nently in Part I. The calculus is also vital to the remainder of the textbook because so much
of that remainder is based upon the material of Part I. Not only is a knowledge of differential
and integral calculus important, but certain other calculus-related aspects of mathematics
should be well understood. The remaining four sections of this preface to Part I provide a
review of those additional mathematical topics that are essential for a thorough understand-
ing of the Part I material. Knowing the required mathematics makes the engineering much
easier.

I.2 Summary of Taylor’s Series

Let f (x) be a function of single variable. The Taylor’s series for f (x) about x = a
may be written as

f (x) = f (a) + (x − a) f ′(a) + 1

2!
(x−a)2 f ′′(a) + · · · + 1

n!
(x−a)n f (n)(a) + · · ·

when all the derivatives exist and are continuous in a closed interval containing x = a. This
same series is written in a slightly different style at the end of this section. The question
of exactly when a Taylor’s series is valid is not a simple one. The use of Taylor’s series
to represent the exceptionally smooth functions that generally describe stresses, strains,
displacements, and the derivatives of these quantities in continuous structures has never led
to contradictions. Hence this series is used freely whenever discontinuities are not suspected.
A function that has a Taylor’s series expansion is called “analytic.”

In two dimensions, at x = a and y = b, Taylor’s series, written in a slightly different
style, is

F(a + h, b + k) = F(a, b) +
∑ 1

n!

[
h

�

�x
+ k

�

�y

]n

F(x, y)
∣∣∣
x=a,y=b

where the summation is from n = 1 to infinity. If the reader finds the style of presentation
for the Taylor’s series in two dimensions unfamiliar, it may help to note that, for exam-
ple, the first series can be written in the style of the second series simply by substituting
(a + h) for the variable x. That is, where h is now the variable

f (a + h) = f (a) + h f ′(a) + h2

2!
f ′′(a) + · · · + hn

n!
f (n)(a) + · · ·

I.3 Summary of Newton’s Method for Finding Roots

There are numerous approximate methods for finding the roots of polynomial
equations, many of which are not limited to real roots. Newton’s method is a simple matter
when limited to real roots, and this method is not limited to polynomial equations. Newton’s
method is an iterative procedure, which means the same procedure is applied repeatedly
until the results exhibit convergence to the degree of accuracy desired. Newton’s method
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The Fundamentals of Structural Analysis 3

f (x)
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Figure I.1. A tangent (as opposed to secant) approach to determining the real roots of a

single variable function.

begins with a first estimate for the location of the desired polynomial root, xa. It does not
matter how this initial estimate xa is obtained. For example, the initial estimate of the root
could be obtained from a rough graph of the polynomial equation. The first estimate is
used in this iterative procedure to calculate a second estimate that is closer to the actual
root, and the second estimate is used to calculate a still closer third estimate, and so forth.
From Fig. I.1, it can be seen that from the interpretation of the derivative as a slope,
f ′(xa) = f (xa)/(xa − xb). Solving this equation for the second estimate xb yields

xb = xa − f (xa)

f ′(xa)

Used repeatedly, this equation is the means of obtaining a series of improved estimates.
The only caution is that the initial estimate has to be “close” enough to the desired root
so that the process converges to that root. For example, if it were desired to discover the
root x = π of the equation sin x = 0, then an initial guess of xa = 1 would lead to the root
x = 0 rather than the desired root.

See Refs. [44, 60] for a discussion of the intricacies of using Newton’s method to find
complex roots.

I.4 The Binomial Series

From Ref. [1], it may be proved via use of Taylor’s series, that for any real number
m, and for any x such that |x | < 1,

(1 + x)m = 1 + mx + m(m − 1)
x2

2!
+ m(m − 1)(m − 2)

x3

3!
+ · · ·

+ [m(m − 1) · · · (m − n + 1)]
xn

n!
+ · · ·

This series is only of finite length when m is equal to a positive integer.
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4 The Fundamentals of Structural Analysis

I.5 The Chain Rule for Partial Differentiation

Consider a variable q = Q(r , s, t). In this case, Q is an arbitrary function of the
variables r, s, and t, which are called the first class variables. Let the first class variables be
in turn functions of the second class variables x, y, and z; that is, r = R(x, y, z), s =
S(x,y, z), and t = T (x, y, z). Since the first class variables are dependent on the values of the
second class variables, q can also be considered to be a function of the second class variables.
Therefore derivatives of q can be taken with respect to the second class variables x, y, and z.
The chain rule for partial differentiation of q with respect to x is as follows (Ref. [1]):

�q

�x
= �Q

�r

�R

�x
+ �Q

�s

�S

�x
+ �Q

�t

�T

�x

Notice the pattern of the variables. Each of the first class variables r, s, and t gets its chance
to be part of a derivative of Q. Then each first class variable in turn is differentiated with
respect to x, which is the second class variable with which the top variable q is differentiated
in this illustration. The pattern for �q/�x is that the leading function of each pair of products
is always Q, the trailing variable is always x, and the connecting terms are always related
to the first class variables.

The partial derivative of q with respect to y or z is the same as above but for x replaced
by y or z. If the first class variables r, s, and t were only functions of x instead of x, y, and z,
then �q/�x would become dq/dx, and �R/�x would become dR/dx, and so on. It is common
practice to write �r/�x in place of �R/�x, or dr/dx in place of dR/dx, and so on.
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CHAPTER 1

Stress in Structures

1.1 The Concept of Stress

Structural engineers are concerned with the effects that forces produce on struc-
tures. That forces produce results such as deformations or structural collapse is the usual
structural engineering cause-to-effect point of view. Even though this viewpoint is not the
only possible or even useful viewpoint, it is the one adopted implicitly in Parts I, II, and III
of this text as a temporary convenience until it becomes necessary to adopt a more general
viewpoint. In other words, the usual engineering viewpoint is that the forces are an input, the
structure is the system, and the effects of the forces acting on the structure (deformations,
cracking, etc.) are the output. If a structural effect in turn influences the forces acting on
the structure, then a feedback loop involving the forces and the structural effect exists. An
example of structural feedback is first encountered in Part III of this text in the form of a
beam buckling problem.

The theory that is developed in the next four chapters is valid for any type of force or
combination of forces (within certain limits), and any type of structure. The task of classi-
fying types of forces and structures can wait until it becomes necessary. What is necessary
now is to begin to discuss the types of effects that forces produce on structures. One effect
that forces can produce is structural failure. Structural failure is defined simply as occurring
whenever a structure no longer can serve its intended use. A structural failure can be the
dramatic collapse or rapid chain reaction disintegration of a large, enormously expensive
structure (e.g., the Challenger space shuttle), or it can be as trivial as a wire clothes hanger
being sufficiently bent out of shape that its usefulness as a clothes hanger is outweighed
by the bother of straightening it. Clearly, certain structural failures are acceptable after an
appropriate service life, and the service lives and performance of some structures have to be
monitored or ended so as to avoid failures. The resulting question that structural engineers
must address is the one that asks how structural failures can be anticipated with reason-
able precision; that is, how can failures be predicted mathematically? In order to focus on
the preliminary steps essential to predicting structural failures, this text omits discussion
of the important topics of confirming mathematical predictions through testing or service
experience monitoring.

The question of how to predict structural failures is a difficult question because there are
many types of structural failure, and each type of failure has its own complexity. Returning
to the example of wire clothes hangers, the large-deformation “bent-out-of-shape” type
failure of the wire hanger to support three or more heavy winter coats is quite different
from the fracture type of failure that results when a small portion of the hanger is repeatedly
bent back and forth upon itself until the wire fractures. The process of predicting structural
failures can be conveniently divided into two steps. The first step is the calculation of either
or both of the analytical quantities called “stresses” and “displacements.” (Definitions of
stress and displacement are decided upon later.) The second step is to use, for example,
the calculated stresses, the known material characteristics of the structure, and the loading
characteristics to estimate the safety of the structure. This introductory text concentrates on
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6 The Fundamentals of Structural Analysis

Figure 1.1. (a) Same length, uniform bars with the same cross-sectional area, but different

cross-sectional shapes. (b) Same length, uniform bars with twice the cross-sectional area of

the previous set. (c) By definition, “bars” only transmit axial forces (tensile or compressive)

and twisting moments.

explaining the preliminary step of calculating stresses and displacements. Explanations of
the process of using the calculated stresses or displacements to estimate the likelihood of
failure is mostly left to more advanced texts, each of which generally concentrates on only
one type of failure.

In this chapter the topic of stresses is introduced. The introduction is done in a complete
manner that will not require extension or further elaboration short of the most advanced
studies in solid mechanics. Thus this approach will save the reader time and effort in the pro-
cess of learning the elements of structural mechanics. The first thing to be done is to provide
an illustration of why engineers have developed the concept of stress, and the usefulness of
that concept for determining when a structure will fall in a simple way. The same illustration
will provide a basis for choosing a definition for stress. Consider the two sets of bars shown
in Figs. 1.1(a) and 1.1(b). A bar is a long thin object of any constant cross-sectional shape
that is subjected to only two types of loads. The first type of load is an axial force, that
is, a force whose vector representation parallels an axis along the length of the bar. The
second type of load is a twisting moment, also called a torque. Its double arrowhead vector
representation (right-hand rule) is also one where the vector is parallel to an axis along the
length of the bar. The conventional representations of bars loaded in the above manner are
shown in Fig. 1.1(c). Let the bars in Fig. 1.1(a) all be well made from the same material
and have the same cross-sectional area as that of a typical pencil. Let the bars in Fig. 1.1(b)
have twice that cross-sectional area, and be well made of the same material as the bars
in Fig. 1.1(a). If increasing tensile forces, that is, forces that tend to stretch the bars, are
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Stress in Structures 7

applied to each of the bars in Fig. 1.1(a), then it would be determined experimentally that
all of the bars in Fig. 1.1(a) pulled apart (failed) at approximately the same final value of the
applied-tensile force. The small differences between the magnitudes of the tensile forces
at failure for each of the bars in Fig. 1.1(a) would be due to experimental measurement
errors and small, unobserved differences between the bars. For cross-sectional areas like
those of a typical pencil, or greater, it could also be discovered that the length of the bar
has no appreciable effect on the magnitude of the failure load. Thus, from this first set of
experimental results it can be concluded that, for this type of loading, the shape of the bar
cross-section and its length are immaterial. Let the larger cross-section bars of Fig. 1.1(b)
be subjected to the same experimental routine. Again it would be observed that each bar of
this set failed at approximately the same final load value. Moreover, it would be observed
that the failure loads for the bars of Fig. 1.1(b) are twice those of Fig. 1.1(a). In other words,
doubling the cross-sectional area doubles the magnitude of the tensile failure load. Further-
more, this proportionality would continue for all larger and many smaller multiples of the
cross-sectional area. (If the bar cross-sections are very small, for example, like those of thin
wires, then small manufacturing imperfections may have large effects on the magnitude of
the tensile load at failure.) Since a consistent goal of all engineers is to simplify their under-
standing of physical phenomena wherever possible, it is desirable to seek the best possible
way to organize this simple data set. This can be done by noticing that the one thing that all
the bars of Figs. 1.1(a) and 1.1(b) have in common is the ratio of the failure load value to
the value of the cross-sectional area. The simple experiment described above suggests that
the ratio of force to area is a primary means of predicting the behavior of structures and the
materials from which they are made. Experiments with different materials, loadings and
structural shapes would show that this conclusion is generally true. Hence a special name
is bestowed on the ratio of force to area. The name is, of course, stress.

Very few useful structures are as simple as the bars in Fig. 1.1. No loadings are simpler
than the tensile forces sketched in Fig. 1.1. The latter statement is based on the implication
inherent in the sketch as it is drawn that the stress produced by the normal force, N, is
evenly (i.e., “uniformly”) distributed over the bar cross-sectional area, A. In other words,
for this type of loading, the stress everywhere on the bar cross-section is equal to the
average stress. In symbolic form, if σav is the average stress, then by the ratio concept of the
preceding paragraph, σav = N/A. The question arises as to whether all stress distributions
are necessarily uniform. To answer this question, consider two bars of equal length with
equal-area square cross-sections. Let the first bar be made of rubber and let the second bar be
made of steel. Let axial tensile forces be applied separately to each bar so as to stretch each
bar exactly the same distance. The reader recognizes that a much greater force is required
to stretch the steel bar the specified distance than is required to stretch the rubber bar that
same distance. Thus, in these circumstances of equal areas, the average stress in the steel
bar is much greater than the average stress in the rubber bar. Now consider the situation
where the two bars in their equally stretched condition are bonded together to form one
stretched bar. Clearly, from the viewpoint of the now single bar, the stress distribution is
not uniform since the stress is much higher over the steel portion of the bar than over the
rubber portion.

It is also true that a nonuniform stress distribution can exist over a cross-section of a
bar made of only one material. Consider two square cross-section bars of cross-sectional
area A which are made of the same material. Let the first of these two bars be loaded by
a tensile force of magnitude 9000 lb, and the second by a tensile force of 1000 lb, where
both forces are uniformly distributed over their respective cross-sections. Let the unloaded
length of the first bar be just slightly and sufficiently shorter than that of the second bar so
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8 The Fundamentals of Structural Analysis

Figure 1.2. Illustration of the possibility of a nonuniform distribution of axial stresses

across the cross-section of a bar.

that the stable loaded lengths of both bars are exactly the same. If the two bars are now fused
together along their lengths to form one bar of cross-sectional area 2A, while the respective
loads are maintained on both halves of the now single bar, the result is a bar as shown in
Fig. 1.2. In this case the bar is made of a single material with a stress acting over one half
of the new cross-section that is nine times as great as that acting over the other half of the
cross-section. When the stress does vary significantly, it is not useful to work with a value of
the average stress over the entire cross-section. Clearly the more heavily loaded half of the
fused bar is closer to rupture than the less loaded half. For that type of reason, engineers are
usually much more interested in knowing the values of the peak stresses and knowing how
extensive are the areas over which high stresses act. This latter information is much more
useful when estimating the likelihood of local material failures or more general structural
failures.

It is also important to note that simply stating that the two loads acting upon the combined
bar’s end cross-sectional area have a combined magnitude of 10 000 lbs would not be
sufficiently informative with regard to the load distribution on the end surfaces of that bar. It
will be necessary to be more precise when specifying the loads acting on the outer surfaces
of the bodies under study.

The fact that stresses are not always constant over a given internal planar area requires
careful consideration about how stress is to be defined. The definition must not compromise
the basic concept of stress being the ratio of force over area. Since both force and area are
measurable quantities, so then their ratio must also be a measurable quantity. Therefore it is
necessary that the definition produce a unique measure; that is, that there be no ambiguity
as to the magnitude of the stress. Consider Fig. 1.3(a). That sketch shows an edge view of
a varying stress distribution acting over a beam cross-section that is positioned somewhere
along the length of a loaded beam. (Beams have the same general geometry as bars, but the
name “beam” indicates a more general type of loading.) Since an average stress value based
on a total area is not a satisfactory measure, explore the possibility of a stress value that can
be associated with smaller portions of the total area. A definition of stress based on sub-
areas would permit having separate stress values where the stresses are high, or anywhere
else. Therefore consider an arbitrarily located sub-area. Better yet, consider the arbitrarily
located sequence of three sub-areas, from larger to smaller, as drawn in Fig. 1.3(b). Each
sub-area in the sequence has been chosen as an included square, and each square has the
point P as one vertex. Figure 1.3 (c) shows edge views of the stress distributions acting
on that sequence of sub-areas. For the lack of a better idea, let it be said that the stress to
be associated with each sub-area of the sequence is the average stress for that sub-area.
Geometrically, the average stress is represented by the dashed line ordinate in Fig. 1.3(c).
It is easily seen that in this case the value of the stress to be associated with each sub-area
decreases as the area decreases. Similarly, if the sequence of squares approached point Q,
instead of point P, the stress values would increase as the total force and the magnitude of the
sub-area decreased. It also should be clear from the geometry that if the sequence of sub-area
was greatly extended in an orderly fashion beyond three in number, the value of the average
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Stress in Structures 9

Figure 1.3. (a) Side view of a tensile force whose effect is distributed linearly over the

bar cross-section. (b) The process of considering smaller and smaller portions of the bar

cross-section at the fixed-point P. (c) A geometric illustration of how the average intensity

of the distributed force near point P approaches a unique value as the small portion of the

total cross-sectional area anchored at point P is systematically reduced by a factor of 4.

stress would stabilize (i.e., converge) as the sequence of dashed lines representing the stress
magnitude approached either point P or Q. For example, for an approach to point P, the
dashed line that depicts the average value of the stress over the sub-area in the sequence of
sub-areas would irresistibly approach, and be confined by, the stress magnitude line at point
P. This fixed stress magnitude at point P is precisely the unique force over area measure
that is sought. This measure needs only to be expressed mathematically as the following
limit,1 where N, the total force acting over the sub-area A, is a function of A:

Stress ≡ lim
A→0

N

A
(1.1)

In this limit both the numerator and denominator decrease jointly to very small, even
infinitesimal quantities.2 Recall that the definition of a derivative is exactly the same type
of limit. For example, the derivative of the function f (x) at the point x p is the limit as

1 The three-bar symbol signifies that the relationship between the left-hand side and the right-hand side

is that of an identity. An identity is an equality that is true in all circumstances. A simple way of

appreciating the difference between an identity and a mere equality is to recall that for 0 ≤ θ ≤ 2π ,

the formula cos2 θ + sin2 θ ≡ 1.0 is true for all θ , while cos θ + sin θ ≡ 1.0 is only true for two values

of θ . All definitions are identities.
2 The atomic nature of materials is ignored in preference to the convenient fiction that all pure materials

exhibit the same physical properties for small samples, no matter how small, as are exhibited on average

for large samples of the material. This convenient approximation leads to the material being called

a continuum and thus the material of Chapters 1–4 is called solid mechanics, a branch of continuum

mechanics.
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10 The Fundamentals of Structural Analysis

x approaches x p of the ratio of [ f (x p) − f (x)]/[x p − x]. Note how closely the above
definition of the derivative fits the illustration in Fig. 1.3(c) where x p is analogous to
the point P, and x is analogous to the right-hand point in the sequence Q, R, S, . . . . This
argument allows rewriting of the above definition, Eq. (1.1), as the ratio of two differentials;
that is, as

Stress = d N

d A
(1.2)

This definition of stress is well and good as far as it goes, but it does not take into
account the one further fact that the stress acting upon the cross-sectional area need not,
as always assumed in the above discussion, act perpendicularly to the surface of the area
under discussion. A simple demonstration that stress can act in the plane of the area as well
as perpendicularly to the area occurs when one places one’s hand firmly on a flat surface,
and then rubs the surface with that hand, creating, by means of the friction between the
hand and the surface, an in-plane stress on the flat surface. Note that the total force N acting
upon the flat surface beneath the hand is the vector sum of the normal component (from
pressing down with the hand) and the in-plane component. Since neither component is zero
in this case, the total force vector N is neither normal to nor within the plane of the surface.
Another confirmation of the possibility that the stress does not always act in a direction
that is normal to the area under consideration can be obtained by merely passing an oblique
plane through the first or second bar in Fig. 1.1(c). Since the total force, and hence the total
stress, in the bar parallels the bar axis, and the normal to the oblique plane is not parallel
to the bar axis, the stress is not normal to the oblique plane. Therefore, it is now necessary
to adjust the above definition of stress to account for the directional properties of forces
and stresses. When considering an area with a fixed orientation in space, stress is a vector
quantity because it is a force vector (d N ) divided by a scalar (d A). (The qualification “when
considering an area with a fixed orientation” is important, and is developed later.)

On the basis of the above discussion, it is now a simple matter to define a normal stress
as the limit of the ratio of the normal force acting upon an area of fixed orientation, as the
magnitude of that area approaches zero. The same can be done for the in-plane stress, called
the total shearing stress. This decomposition of the total stress into a normal stress and a
total shear stress is significant because the effects of these two different types of stresses on
materials can be quite different. Two more steps are necessary to make the above definitions
still more useful. The first step is to introduce a coordinate system. To begin simply, consider
a right-handed Cartesian3 coordinate system where the x axis is normal to the area being
studied, while the y and z axes lie in the tangent plane of the area under study. In this case
the area is called an “x area,” or “x surface,” or “x plane,” since the orientation of the plane
is precisely located by its normal, the x axis. In other words, when the x axis is fixed in
space, then any plane perpendicular to that axis is an x plane.

Lower-case sigma (σ ) is chosen to symbolize stress. A double-subscript notation is used
to identify which of the possible stress components is meant; see Fig. 1.4. The first subscript
designates the plane of the area upon which the stress acts, while the second subscript
designates the direction in which the stress acts. Looking at Fig. 1.4, for example,

σxy = d Ny

d Ax
(1.3)

3 From Ref. [2], the adjective “Cartesian” is derived from the family name of René Descartes (1596–

1650), who first introduced the coordinate method and established analytical geometry.
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