LÉVY PROCESSES AND INFINITELY DIVISIBLE DISTRIBUTIONS

Lévy processes are rich mathematical objects and constitute perhaps the most basic class of stochastic processes with a continuous time parameter. This book is intended to provide the reader with comprehensive basic knowledge of Lévy processes, and at the same time serve as an introduction to stochastic processes in general. No specialist knowledge is assumed and proofs are given in detail. Systematic study is made of stable and semi-stable processes, and the author gives special emphasis to the correspondence between Lévy processes and infinitely divisible distributions. All serious students of random phenomena will find that this book has much to offer.

Now in paperback, this corrected edition contains a brand new supplement discussing relevant developments in the area since the book’s initial publication.

Ken-iti Sato is Professor Emeritus at Nagoya University, Japan.
CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board:
B. Bollobás, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: www.cambridge.org/mathematics.

Already published

103 E. Frenkel Langlands correspondence for loop groups
104 A. Ambrosetti & A. Malchiodi Nonlinear analysis and semilinear elliptic problems
105 T. Tao & V. H. Vu Additive combinatorics
106 E. B. Davies Linear operators and their spectra
107 K. Kodaira Complex analysis
108 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Harmonic analysis on finite groups
109 H. Geiges An introduction to contact topology
110 J. Faraut Analysis on Lie groups: An introduction
111 E. Park Complex topological K-theory
112 D. W. Stroock Paritial differential equations for probabilists
113 A. Kirillov, Jr An introduction to Lie groups and Lie algebras
114 F. Gesztesy et al. Soliton equations and their algebro-geometric solutions, II
115 E. de Faria & W. de Melo Mathematical tools for one-dimensional dynamics
116 D. Applebaum Lévy processes and stochastic calculus (2nd Edition)
117 T. Szamuely Galois groups and fundamental groups
118 G. W. Anderson, A. Guionnet & O. Zeitouni An introduction to random matrices
119 C. Perez-Garcia & W. H. Schikhof Locally convex spaces over non-Archimedean valued fields
120 P. K. Friz & N. B. Victoir Multidimensional stochastic processes as rough paths
121 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Representation theory of the symmetric groups
122 S. Kalikow & R. McCutcheon An outline of ergodic theory
123 G. F. Lawler & V. Limic Random walk: A modern introduction
124 K. Lux & H. Pahlings Representations of groups
125 K. S. Kedlaya p-adic differential equations
126 R. Beals & R. Wong Special functions
127 E. de Faria & W. de Melo Mathematical aspects of quantum field theory
128 A. Terras Zeta functions of graphs
129 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, I
130 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, II
131 D. A. Craven The theory of fusion systems
132 J. Viáninan Models and games
133 G. Malle & D. Testerman Linear algebraic groups and finite groups of Lie type
134 P. Li Geometric analysis
135 F. Maggi Sets of finite perimeter and geometric variational problems
136 M. Brodmann & R. Y. Sharp Local cohomology (2nd Edition)
137 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, I
138 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, II
139 B. Helffer Spectral theory and its applications
140 R. Pemantle & M. C. Wilson Analytic combinatorics in several variables
141 B. Brammer & N. Fagella Quasiconformal surgery in holomorphic dynamics
142 R. M. Dudley Uniform central limit theorems (2nd Edition)
Lévy Processes and Infinitely Divisible Distributions

Revised Edition

KEN-ITI SATO
Nagoya University, Japan
Contents

Preface to the revised edition ix
Preface to the first printing xi
Remarks on notation xiii

Chapter 1. Basic examples 1
1. Definition of Lévy processes 1
2. Characteristic functions 7
3. Poisson processes 14
4. Compound Poisson processes 18
5. Brownian motion 21
6. Exercises 1 28
Notes 29

Chapter 2. Characterization and existence of Lévy and additive processes 31
7. Infinitely divisible distributions and Lévy processes in law 31
8. Representation of infinitely divisible distributions 37
9. Additive processes in law 47
10. Transition functions and the Markov property 54
11. Existence of Lévy and additive processes 59
12. Exercises 2 66
Notes 68

Chapter 3. Stable processes and their extensions 69
13. Selfsimilar and semi-selfsimilar processes and their exponents 69
14. Representations of stable and semi-stable distributions 77
15. Selfdecomposable and semi-selfdecomposable distributions 90
16. Selfsimilar and semi-selfsimilar additive processes 99
17. Another view of selfdecomposable distributions 104
18. Exercises 3 114
Notes 116

Chapter 4. The Lévy–Itô decomposition of sample functions 119
19. Formulation of the Lévy–Itô decomposition 119
20. Proof of the Lévy–Itô decomposition 125
CONTENTS

21. Applications to sample function properties 135
22. Exercises 4 142
Notes 144

Chapter 5. Distributional properties of Lévy processes 145
23. Time dependent distributional properties 145
24. Supports 148
25. Moments 159
26. Lévy measures with bounded supports 168
27. Continuity properties 174
28. Smoothness 189
29. Exercises 5 193
Notes 196

Chapter 6. Subordination and density transformation 197
30. Subordination of Lévy processes 197
31. Infinitesimal generators of Lévy processes 205
32. Subordination of semigroups of operators 212
33. Density transformation of Lévy processes 217
34. Exercises 6 233
Notes 236

Chapter 7. Recurrence and transience 237
35. Dichotomy of recurrence and transience 237
36. Laws of large numbers 245
37. Criteria and examples 250
38. The symmetric one-dimensional case 263
39. Exercises 7 270
Notes 272

Chapter 8. Potential theory for Lévy processes 273
40. The strong Markov property 273
41. Potential operators 281
42. Capacity 295
43. Hitting probability and regularity of a point 313
44. Exercises 8 328
Notes 331

Chapter 9. Wiener–Hopf factorizations 333
45. Factorization identities 333
46. Lévy processes without positive jumps 345
47. Short time behavior 351
48. Long time behavior 363
49. Further factorization identities 369
50. Exercises 9 382
CONTENTS

Notes 383

Chapter 10. More distributional properties 385
51. Infinite divisibility on the half line 385
52. Unimodality and strong unimodality 394
53. Selfdecomposable processes 403
54. Unimodality and multimodality in Lévy processes 416
55. Exercises 10 424
Notes 426

Supplement 427
56. Forms of Lévy-Khintchine representation 427
57. Independently scattered random measures 430
58. Relations of representations of selfdecomposable distributions 435
59. Remarkable classes of infinitely divisible distributions 436
60. Lebesgue decomposition for path space measures 439
61. Supports of Lévy processes 446
62. Densities of multivariate stable distributions 447
63. Conditions stronger than subexponentiality 450
64. Class of c-decomposable distributions 453

Solutions to exercises 457
References and author index 481
Subject index 513
Preface to the revised edition

After the publication of this book in 1999 progress continued in the theory of Lévy processes and infinitely divisible distributions. Of the various directions let me mention two.

1. Fluctuation theory of Lévy processes on the line has been studied in many papers. It is a development of Wiener–Hopf factorizations. The publication of two books, Kyprianou [303] and Doney [103], provided fresh impetus. Lévy processes without positive jumps were deeply analyzed in this connection such as in Kuznetsov, Kyprianou, and Rivero [301]. Following Lamperti [306], the relation between selfsimilar (in an extended sense) Markov processes on the positive half line and exponential functionals of Lévy processes on the real line was studied in Bertoin and Yor [30, 31] and others. In the study of stable processes Kyprianou, Pardo, and Watson [304] combined this line of research and Wiener–Hopf factorizations.

2. A comprehensive treatment of infinitely divisible distributions on the line appeared in the monograph [503] by Steutel and van Harn, which discussed a lot of subjects not treated in this book. The analysis of the law of \(\int_0^t e^{B_s + \alpha s} ds \) (exponential functional of Brownian motion with drift) was explored by Yor and others, for example in Matsumoto and Yor [341]. Further, the law of \(\int_0^\infty e^{-X_s} dY_s \) for a two-dimensional Lévy process \(\{(X_t, Y_t)\} \) began to attract attention such as in Lindner and Sato [321, 322]. Tail behaviors related to subexponentiality are another subject in one dimension. In higher dimensions Watanabe’s results [563] on densities of stable distributions opened a new horizon.

Subordinators (increasing Lévy processes) and their applications were described in Bertoin’s lecture [27]. We can find a unique approach to them in Schilling, Song, and Vondraček [472]. On stochastic differential equations based on Lévy processes, Kunita’s paper [299] and Applebaum’s book [6] should be mentioned.

In this new printing a Supplement of 30 pages is attached at the end. The purpose of the Supplement is twofold. First, among a great many areas of progress it covers some subjects that I am familiar with (Sections 59, 62, 63, 64, and a part of 57). Second, it includes some materials closely connected with the original ten chapters (Sections 56, 58, 60, 61 and a part of 57). Changes to the text of the first printing are only few, which
I considered necessary. Any addition or deletion was avoided, with the exception of a few inserted lines in Remarks 15.12 and 37.13 and Definition 51.9. Naturally all numberings except reference numbers remain the same. Thus I chose to preserve the contents of the first printing, refraining from partial improvement. Newly added references are restricted to those cited in the Supplement and in this Preface. They are marked with asterisks in the list of references. For readers of the first printing a list of corrections and changes in the ten chapters is posted on my website (http://ksato.jp/).

There is no writing on the history of the study of Lévy processes and infinitely divisible distributions. But Notes at the end of each chapter of this book and my article [451] point out some epoch-making works.

I would like to thank Alex Lindner, Makoto Maejima, René Schilling, and Toshiro Watanabe for valuable comments on the published book and on this printing in preparation. Bibliographical remarks by Alex and René were very helpful. Encouragement from the late Hiroshi Tanaka is my cherished memory.

Ken-iti Sato
Nagoya, 2013
Preface to the first printing

Stochastic processes are mathematical models of random phenomena in time evolution. Lévy processes are stochastic processes whose increments in nonoverlapping time intervals are independent and whose increments are stationary in time. Further we assume a weak continuity called stochastic continuity. They constitute a fundamental class of stochastic processes. Brownian motion, Poisson processes, and stable processes are typical Lévy processes. After Paul Lévy’s characterization in the 1930s of all processes in this class, many researches have revealed properties of their distributions and behaviors of their sample functions. However, Lévy processes are rich mathematical objects, still furnishing attractive problems of their own. On the other hand, important classes of stochastic processes are obtained as generalizations of the class of Lévy processes. One of them is the class of Markov processes; another is the class of semimartingales. The study of Lévy processes serves as the foundation for the study of stochastic processes.

Dropping the stationarity requirement of increments for Lévy processes, we get the class of additive processes. The distributions of Lévy and additive processes at any time are infinitely divisible, that is, they have the nth roots in the convolution sense for any n. When a time is fixed, the class of Lévy processes is in one-to-one correspondence with the class of infinitely divisible distributions. Additive processes are described by systems of infinitely divisible distributions.

This book is intended to provide comprehensive basic knowledge of Lévy processes, additive processes, and infinitely divisible distributions with detailed proofs and, at the same time, to serve as an introduction to stochastic processes. As we deal with the simplest stochastic processes, we do not assume any knowledge of stochastic processes with a continuous parameter. Prerequisites for this book are of the level of the textbook of Billingsley [34] or that of Chung [80].

Making an additional assumption of selfsimilarity or some extensions of it on Lévy or additive processes, we get certain important processes. Such are stable processes, semi-stable processes, and selfsimilar additive processes. We give them systematic study. Correspondingly, stable, semi-stable, and selfdecomposable distributions are treated. On the other hand,
the class of Lévy processes contains processes quite different from selfsimilar, and intriguing time evolution in distributional properties appears.

There are ten chapters in this book. They can be divided into three parts. Chapters 1 and 2 constitute the basic part. Essential examples and a major tool for the analysis are given in Chapter 1. The tool is to consider Fourier transforms of probability measures, called characteristic functions. Then, in Chapter 2, characterization of all infinitely divisible distributions is given. They give description of all Lévy processes and also of all additive processes. Chapters 3, 4, and 5 are the second part. They develop fundamental results on which subsequent chapters rely. Chapter 3 introduces selfsimilarity and other structures. Chapter 4 deals with decomposition of sample functions into jumps and continuous motions. Chapter 5 is on distributional properties. The third part ranges from Chapter 6 to Chapter 10. They are nearly independent of each other and treat major topics on Lévy processes such as subordination and density transformation, recurrence and transience, potential theory, Wiener–Hopf factorizations, and unimodality and multimodality.

We do not touch extensions of Lévy processes and infinitely divisible distributions connected with Lie groups, hypergroups, and generalized convolutions. There are many applications of Lévy processes to stochastic integrals, branching processes, and measure-valued processes, but they are not included in this book. Risk theory, queueing theory, and stochastic finance are active fields where Lévy processes often appear.

The original version of this book is Kahou katei written in Japanese, published by Kinokuniya at the end of 1990. The book is enlarged and material is rewritten. Many recent advances are included and a new chapter on potential theory is added. Exercises are now given to each chapter and their solutions are at the end of the volume.

For many years I have been happy in collaborating with Makoto Yamazato and Toshiro Watanabe. I was encouraged by Takeyuki Hida and Hiroshi Kunita to write the original Japanese book and the present book. Frank Knight and Toshiro Watanabe read through the manuscript and gave me numerous suggestions for correction of errors and improvement of presentation. Kazuyuki Inoue, Mamoru Kanda, Makoto Maejima, Yumiko Sato, Masaaki Tsuchiya, and Makoto Yamazato pointed out many inaccuracies to be eliminated. Part of the book was presented in lectures at the University of Zurich [446] as arranged by Masao Nagasawa. The preparation of this book was made in AMSLaTeX; Shinta Sato assisted me with the computer. My heartfelt thanks go to all of them.

Ken-iti Sato
Nagoya, 1999
Remarks on notation

\(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) are, respectively, the collections of all positive integers, all integers, all rational numbers, all real numbers, and all complex numbers. \(\mathbb{Z}_+, \mathbb{Q}_+, \) and \(\mathbb{R}_+ \) are the collections of nonnegative elements of \(\mathbb{Z}, \mathbb{Q}, \) and \(\mathbb{R}, \) respectively.

For \(x \in \mathbb{R}, \) positive means \(x > 0; \) negative means \(x < 0. \) For a sequence \(\{x_n\}, \) increasing means \(x_n \leq x_{n+1} \) for all \(n; \) decreasing means \(x_n \geq x_{n+1} \) for all \(n. \) Similarly, for a real function \(f, \) increasing means \(f(s) \leq f(t) \) for \(s < t, \) and decreasing means \(f(s) \geq f(t) \) for \(s < t. \) When the equality is not allowed, we say strictly increasing or strictly decreasing.

\(\mathbb{R}^d \) is the \(d \)-dimensional Euclidean space. Its elements \(x = (x_j)_{j=1,...,d}, \) \(y = (y_j)_{j=1,...,d} \) are column vectors with \(d \) real components. The inner product is \(\langle x, y \rangle = \sum_{j=1}^{d} x_j y_j; \) the norm is \(|x| = (\sum_{j=1}^{d} x_j^2)^{1/2}. \) The word \(d \)-variate is used in the same meaning as \(d \)-dimensional.

For sets \(A \) and \(B, \) \(A \subseteq B \) means that all elements of \(A \) belong to \(B. \) For \(A, B \subseteq \mathbb{R}^d, z \in \mathbb{R}^d, \) and \(c \in \mathbb{R}, \) \(A + z = \{x + z : x \in A\}, \) \(A - z = \{x - z : x \in A\}, \) \(A + B = \{x + y : x \in A, y \in B\}, \) \(A - B = \{x - y : x \in A, y \in B\}, \) \(cA = \{cx : x \in A\}, \) \(-A = \{-x : x \in A\}, A \setminus B = \{x : x \in A \text{ and } x \notin B\}, \) \(\mathbb{A} \subseteq \mathbb{R}^d \) is the closure of \(A. \)

\(\mathcal{B}(\mathbb{R}^d) \) is the Borel \(\sigma \)-algebra of \(\mathbb{R}^d. \) For any \(B \in \mathcal{B}(\mathbb{R}^d), \mathcal{B}(B) \) is the \(\sigma \)-algebra of Borel sets included in \(B. \) \(\mathcal{B}(B) \) is also written as \(B^c. \)

\(\text{Leb}(B) \) is the Lebesgue measure of a set \(B. \) \(\text{Leb}(dx) \) is written \(dx. \)

\(\int g(x, y) dx, F(x, y) \) is the Stieltjes integral with respect to \(x \) for fixed \(y. \)

The symbol \(\delta_a \) represents the probability measure concentrated at \(a. \)

\(\mu_{\mid B} \) is the restriction of a measure \(\mu \) to a set \(B. \)

The expression \(\mu_1 \ast \mu_2 \) represents the convolution of finite measures \(\mu_1 \) and \(\mu_2; \) \(\mu^n \) is the \(n \)-fold convolution of \(\mu. \) When \(n = 0, \mu^0 \) is understood to be \(\delta_0. \)

Sometimes \(\mu(B) \) is written as \(\mu B. \) Thus \(\mu(a, b] = \mu((a, b]]. \)

A non-zero measure means a measure not identically zero.

1\(_B(x) \) is the indicator function of a set \(B, \) that is, \(1_B(x) = 1 \) for \(x \in B \) and \(0 \) for \(x \notin B. \)

\(a \wedge b = \min\{a, b\}, a \vee b = \max\{a, b\}. \)
The expression $\text{sgn } x$ represents the sign function; $\text{sgn } x = 1, 0, -1$ according as $x > 0, = 0, < 0$, respectively.

$P[A]$ is the probability of an event A. Sometimes $P[A]$ is written as PA.

$E[X]$ is the expectation of a random variable X. $E[X; A] = E[X1_A]$.

Sometimes $E[X]$ is written as EX.

$\text{Var } X$ is the variance of a real random variable X.

$x \overset{d}{=} y$ means that X and Y are identically distributed. See p. 3 for the meaning of $\{X_t\} \overset{d}{=} \{Y_t\}$.

P_X is the distribution of X.

The abbreviation a.s. denotes almost surely, that is, with probability 1. The abbreviation a.e. denotes almost everywhere, or almost every, with respect to the Lebesgue measure. Similarly, μ-a.e. denotes almost everywhere, or almost every, with respect to a measure μ.

$D([0, \infty), \mathbb{R}^d)$ is the collection of all functions $\xi(t)$ from $[0, \infty)$ to \mathbb{R}^d such that $\xi(t)$ is right-continuous, $\xi(t+) = \lim_{h \downarrow 0} \xi(t + h) = \xi(t)$ for $t \geq 0$, and $\xi(t)$ has left limits $\xi(t-) = \lim_{h \downarrow 0} \xi(t - h) \in \mathbb{R}^d$ for $t > 0$.

I is the identity matrix. A' is the transpose of a matrix A. For an $n \times m$ real matrix A, $\| A \|$ is the operator norm of A as a linear transformation from \mathbb{R}^m to \mathbb{R}^n, that is, $\| A \| = \sup_{\| x \| \leq 1} |Ax|$. (However, the prime is sometimes used not in this way. For example, together with a stochastic process $\{X_t\}$ taking values in \mathbb{R}^d, we use $\{X'_t\}$ for another stochastic process taking values in \mathbb{R}^d; X'_t is not the transpose of X_t.)

Sometimes a subscript is written larger in parentheses, such as $X_t(\omega) = X(t, \omega)$, $X_t = X(t)$, $S_n = S(n)$, $T_x = T(x)$, $x_n = x(n)$, and $t_k = t(k)$.

The integral of a vector-valued function or the expectation of a random variable on \mathbb{R}^d is a vector with componentwise integrals or expectations.

$\# A$ is the number of elements of a set A.

The expression $f(t) \sim g(t)$ means that $f(t)/g(t)$ tends to 1.

The symbol \Box denotes the end of a proof.