Index

Stars and stellar objects
51 Peg, 233
\(\alpha\)-Aql, Altair, 154
\(\alpha\)-Aur, see “Capella”
\(\alpha\)-Boo, 263
\(\alpha\)-Centauri, 1, 2
\(\alpha\)-CMa, see “Sirius”
\(\alpha\)-Gem, Castor, 229–30
\(\alpha\)-Gruis, 153
\(\alpha\)-Lyr, 129
\(\alpha\)-Ori, see “Betelgeuse”
\(\alpha\)-Vir, Spica, 153, 155
\(\beta\)-Centauri, 271
\(\beta\)-Crucis, 153
\(\beta\)-Gem, Pollux, 229–30
\(\gamma\)-Cass, 268
\(\delta\)-Cephei, 266
\(\eta\)-Virginis, 205
\(\omega\)-Ceti, 133
\(\tau\)-Ceti, 2, 264
Crab pulsar, 292
FU-Or, 268
HD 98800
IRC +10216, 127
LkH\(\alpha\), 101
R-Aqr, 268
R-Leo, 133
R136a (Doraldus nebula), 137, 272
SN 1987a, 271–2
Vega, 170, 187, 227
WR 9a, 268
WR 140, 268
Abbe dispersivity, 168
accretion disk, 268
achromatic interference coronograph, 244, 252
achromatic nulling, 243, 298, 300
achromatic phase correction, 196, 252
active optics, 208, 212, 287
adaptive optics, 100, 109ff, 210, 212, 233
in coronagraphy 249, 258, 275
in interferometry 280–1, 294
Airy disk, 37–8, 176, 189, 210, 213, 236–8, 248–54
albedo, 234, 272–3
aliasing, 77, 126, 307–11
algorithms, image restoration, 76–7, 223
see also CLEAN, MEM
alt-alt mount, 163, 186
alt-az mount, 163, 200
amplitude of wave, definition, 14
amplitude interferometry, 158ff
Anderson, J. A., 4, 122
Angel’s cross, 286
annular aperture, diffraction by, 38, 67, 86
imaging through, 71
Antarctica, 2, 120, 189, 279
aperure synthesis, 47, 64ff, 221–3
aperure masking, 3–4, 120–6, 161, 171, 267
apodization, 28, 233, 235ff, 259, 287–90
with binary mask, 238–9
with phase mask, 239
array of apertures, diffraction by, 34
densified, 217ff
non-redundant, 70, 74, 86, 156, 197, 290
and crowding limitation, 77, 222
telescope masking by, 120–6, 161, 171, 267
periodic, 219–21, 223, 283
diffraction pattern of, 33–7
random, 37, 214–7, 222
diffraction pattern of, 313–5
redundant, 75, 126, 139, 197, 203
and crowding limitation, 78–9
sparse or dilute, 214, 278
undensified cf. densified, 216–7
Arecibo radio telescope, 225–6, 278, 281
aspherical optics, 225, 239
asteroids, 272–3
astronomy, 78, 161, 203–4, 270, 273–4, 284, 288
small-angle (differential), 162, 193, 272
atmospheric turbulence, 1, 18, 37, 88ff, 163, 180, 195
correlation functions in, 95–108, 117
frozen, 102–3
inner and outer scale, 95ff, 102, 273
layers, height dependence, 91, 104–7
atmospheric turbulence (cont.)
phase changes resulting from, 72, 80
speckle pattern (PSF) due to, 88–9, 116–8, 313, 315
autocalibration, 75
autocorrelation function, 123–6, 307
of atmospheric fluctuations, 102, 106
in aperture synthesis, 69–72
definition, 307
Fourier transform of, 307
relationship to coherence function, 48–9
relationship to optical transfer function, 39–40, 192
spatial, 117, 123–6, 133–4, 137
see also “correlation”
auxiliary telescopes and outriggers, 196, 209
Baade–Wesselink method, 266
Balmer, J. E., 84
band-limited function, 308
bandwidth of adaptive optical correction, 177, 196
of heterodyne system, 167, 185
in intensity interferometry, 148–52
optical, and number of fringes, 62, 179, 186, 189, 238
in speckle interferometry, 131–2
baseline accuracy, 162
baseline bootstrapping, 69, 184, 203
beam-combiner, 158, 170ff, 288, 293
beam lines, evacuated, 165–6, 174, 192, 200, 202, 205
beam-reducing (compression) optics, 165, 170–1, 176, 190, 200
beam-splitter, 4, 24ff, 171–2
coatings, 172
non-absorbing (ideal), 25–6, 180, 244
Berkeley Infrared Spatial Interferometer, see “ISI”
Bessel, F. W., 237
Betelgeuse, (α-Ori), 6, 13, 29, 185, 264–5
bimorph deformable mirror, 113–4
binary star, 3, 72, 121, 134, 145, 155, 204
closure phase, 6, 129, 133, 153, 195
determination of orbit, 161, 270–1
separation of components, 4, 122, 129, 133, 153, 195
birefringent properties of mirrors, 164
Bose–Einstein statistics, 58, 146
Bracewell, P. N., 240–1, 259, 285; see also “nulling”
Brown, R. Hanbury, see “Hanbury Brown”
brown dwarf, 275
bumpiness of wavefront, 236, 253–7; see also “phase errors”
bunched light statistics, 57
Caldera de Taburiente, Canary Islands, 225
Cambridge Optical Aperture Synthesis Telescope, see “COAST”
Capella (α-Aur), 52–3, 75, 122, 129, 133–4
Carina hyperteslescope architecture, 224, 226, 230–1, 281–2, 289
Cassegrain telescope, 164–5, 170, 194, 198, 202, 285
Center for High Angular Resolution Astronomy, see “CHARA”
Castor (α-Gem) 229–30
centrosymmetric image, 134
cepheids, 266–7
CERGA (Plateau de Calern), 231; see also “GI2T”
CHARA, 163, 165, 169, 171–2, 175, 179, 200–2
circ function, 37–8, 49
Fourier transform of, 38, 303, 305–6
van Cittert, P. H., 41
van Cittert-Zernike theorem, 46ff, 64, 86, 98
CLEAN, 76, 200, 205
clam-shell corrector, see “Mertz corrector”
closing coronagraphic images, see “coronagraphy”
closure phase, see “phase closure”
CO2 laser heterodyne detection, 185, 206–8
COAST, 52–3, 75–6, 163, 165, 170–2, 179, 197–9, 209, 279
astronomical results, 53, 263, 265
coherence, 40ff
corelation function, turbulence, 95–108, 117
corelation of atmospheric fluctuations, 102, 106
in intensity interferometry, 148–52
optical, and number of fringes, 62, 179, 186, 189, 238
in speckle interferometry, 131–2
baseline accuracy, 162
baseline bootstrapping, 69, 184, 203
beam-combiner, 158, 170ff, 288, 293
beam lines, evacuated, 165–6, 174, 192, 200, 202, 205
beam-reducing (compression) optics, 165, 170–1, 176, 190, 200
beam-splitter, 4, 24ff, 171–2
correlations in intensity, see “intensity”
convolution, 34–6, 48, 51, 86, 305–7
corona, 232, 235, 247ff, 287, 290
coronagraphy, 28, 232, 235, 247ff, 287, 290
further cleaning of images, 256
adaptive optical, 256, 275
coherent, 256–7, 260
incoherent, 259–60
coudé telescope or system, 130, 163–4, 186, 225
cross-correlation, 136
crowding limitation, 75, 77–8, 123, 221–3, 228, 282–3
crystallography, X-ray, 35, 215, 219, 313
curvature sensing, wavefront, 112
dark speckle, 259
darwin space interferometer, 62, 247, 285–7
deconvolution, 76, 85–6, 192, 213
deformable mirrors, 112–4, 257
degeneracy factor of photons, 61
d-function, Dirac, Fourier transform of, 303–4
delay line (path length equalizer), 158, 168, 171, 187, 190, 193, 207

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>demodulation</td>
<td>173</td>
</tr>
<tr>
<td>densified pupil imaging</td>
<td>172, 213ff, 279, 290</td>
</tr>
<tr>
<td>detector, photon</td>
<td>xxxi, 60</td>
</tr>
<tr>
<td>cooled</td>
<td>60, 208</td>
</tr>
<tr>
<td>diffraction, near-field or Fresnel</td>
<td>87, 100</td>
</tr>
<tr>
<td>far-field, see “Fraunhofer diffraction”</td>
<td></td>
</tr>
<tr>
<td>diffraction function</td>
<td>35, 215ff</td>
</tr>
<tr>
<td>diffraction grating</td>
<td>28, 245</td>
</tr>
<tr>
<td>blazed</td>
<td>221</td>
</tr>
<tr>
<td>diffraction limit of resolution</td>
<td>2, 88, 118, 122–3, 126, 128, 160, 187</td>
</tr>
<tr>
<td>direct imaging field (of hypertelescope)</td>
<td>222, 228, 290</td>
</tr>
<tr>
<td>direction cosines</td>
<td>47, 312</td>
</tr>
<tr>
<td>dispersion corrector, see “refractive index dispersion corrector”</td>
<td></td>
</tr>
<tr>
<td>dispersed fringes</td>
<td>179, 187–8, 196, 205</td>
</tr>
<tr>
<td>distance scale (of stars)</td>
<td>266</td>
</tr>
<tr>
<td>Doppler shift, spectroscopic</td>
<td>161, 208, 233, 266, 270–1, 276</td>
</tr>
<tr>
<td>in coherence theory</td>
<td>42, 52</td>
</tr>
<tr>
<td>dust shells</td>
<td>268</td>
</tr>
<tr>
<td>eclipsing of star by planet</td>
<td>233</td>
</tr>
<tr>
<td>Eddington, A. S.</td>
<td>264</td>
</tr>
<tr>
<td>electromagnetic wave</td>
<td>19, 296ff</td>
</tr>
<tr>
<td>in helical geometry</td>
<td>245, 298–300</td>
</tr>
<tr>
<td>Einstein, A.</td>
<td>20, 57</td>
</tr>
<tr>
<td>electron multiplier CCD</td>
<td>131</td>
</tr>
<tr>
<td>equatorial mount</td>
<td>163</td>
</tr>
<tr>
<td>Exo-Earth imager (EEI)</td>
<td>289–92</td>
</tr>
<tr>
<td>extra-solar planet (exo-planet)</td>
<td>17, 161, 192, 196, 257</td>
</tr>
<tr>
<td>Earth (exo-Earth)</td>
<td>213, 234, 286–7, 289–90</td>
</tr>
<tr>
<td>extremely large telescope (ELT)</td>
<td>278, 282</td>
</tr>
<tr>
<td>far-field, 29, 296</td>
<td></td>
</tr>
<tr>
<td>diffraction, see Fraunhofer diff.</td>
<td></td>
</tr>
<tr>
<td>Fermat’s principle</td>
<td>312</td>
</tr>
<tr>
<td>fiber, optical</td>
<td>173, 206, 283–4, 285, 298</td>
</tr>
<tr>
<td>in hyperscopic</td>
<td>226–8</td>
</tr>
<tr>
<td>Fiber-Linked Unit for Recombination, see “FLUOR”</td>
<td></td>
</tr>
<tr>
<td>field of view, synthesized telescope</td>
<td>77</td>
</tr>
<tr>
<td>hyperscopic</td>
<td></td>
</tr>
<tr>
<td>field-crowding, see “crowding”</td>
<td></td>
</tr>
<tr>
<td>Fizeau configuration (of stellar int.)</td>
<td>62, 84, 160, 164, 167, 170–1, 196</td>
</tr>
<tr>
<td>in aperture masking</td>
<td>126ff</td>
</tr>
<tr>
<td>definition, 32, 72</td>
<td></td>
</tr>
<tr>
<td>in hyperscopic</td>
<td>213–4, 222</td>
</tr>
<tr>
<td>interferometers using</td>
<td>187, 243, 293</td>
</tr>
<tr>
<td>FK5 astrometric catalog</td>
<td>273–4</td>
</tr>
<tr>
<td>flotilla of spacecraft</td>
<td>285ff, 293</td>
</tr>
<tr>
<td>fluctuations, atmospheric, in density of air</td>
<td>90</td>
</tr>
<tr>
<td>frequency spectrum</td>
<td>102</td>
</tr>
<tr>
<td>in intensity</td>
<td>103, 108</td>
</tr>
<tr>
<td>in phase, 96</td>
<td></td>
</tr>
<tr>
<td>fluctuations, intrinsic, in light waves, 52ff</td>
<td></td>
</tr>
<tr>
<td>phase and intensity</td>
<td>54–5, 57, 141–2, 147</td>
</tr>
<tr>
<td>wavelength dependence of, 177</td>
<td></td>
</tr>
<tr>
<td>FLUOR, 173–4</td>
<td>202–3, 267</td>
</tr>
<tr>
<td>four-quadrant coronagraph</td>
<td>251–2</td>
</tr>
<tr>
<td>Foucault pendulum</td>
<td>298–9</td>
</tr>
<tr>
<td>Fourier, J. B. J.</td>
<td>300</td>
</tr>
<tr>
<td>analysis, 18</td>
<td></td>
</tr>
<tr>
<td>integral, see “Fourier transform” series</td>
<td>301</td>
</tr>
<tr>
<td>spectroscopy, 27, 144</td>
<td></td>
</tr>
<tr>
<td>transform, definition, 29, 301</td>
<td></td>
</tr>
<tr>
<td>properties and examples, 302ff</td>
<td></td>
</tr>
<tr>
<td>relationship to Fraunhofer diffraction, 29ff, 233, 312ff</td>
<td></td>
</tr>
<tr>
<td>frequency, definition</td>
<td>14</td>
</tr>
<tr>
<td>circular, 15</td>
<td></td>
</tr>
<tr>
<td>spatial, 29</td>
<td></td>
</tr>
<tr>
<td>frequency bandwidth, 43, 184</td>
<td></td>
</tr>
<tr>
<td>Fraunhofer diffraction</td>
<td>29, 37, 116, 132, 134, 311ff</td>
</tr>
<tr>
<td>Fresnel, A., 9, 10</td>
<td>87, 311</td>
</tr>
<tr>
<td>zone, 99</td>
<td></td>
</tr>
<tr>
<td>Fried’s parameter, atmospheric</td>
<td>99f, 109, 117, 120, 123, 160, 249</td>
</tr>
<tr>
<td>influence on interferometer design, 163–4, 197, 206</td>
<td></td>
</tr>
<tr>
<td>wavelength dependence, 99, 206</td>
<td></td>
</tr>
<tr>
<td>fringe tracking</td>
<td>179, 189, 194, 200</td>
</tr>
<tr>
<td>fringe locking</td>
<td>203</td>
</tr>
<tr>
<td>fringe dispersion, see dispersed fringes</td>
<td></td>
</tr>
<tr>
<td>fringe visibility, see “visibility”</td>
<td></td>
</tr>
<tr>
<td>fringes, non-sinusoidal</td>
<td>247, 285–6 “frozen turbulence” hypothesis, 102</td>
</tr>
<tr>
<td>Galilean telescope</td>
<td>214ff</td>
</tr>
<tr>
<td>Gaussian function, 56, 69, 99–100, 117, 178, 253</td>
<td></td>
</tr>
<tr>
<td>Fourier transform of, 303–4</td>
<td></td>
</tr>
<tr>
<td>geometrical limit (atmos. optics)</td>
<td>108–9</td>
</tr>
<tr>
<td>geometrical phase (Berry’s phase), 244–5, 298–9</td>
<td></td>
</tr>
<tr>
<td>Gezari, D., 122, 130</td>
<td></td>
</tr>
<tr>
<td>G2T, 163, 170, 179, 187–9</td>
<td></td>
</tr>
<tr>
<td>astronomical results, 264, 268</td>
<td></td>
</tr>
<tr>
<td>Gregorian telescope</td>
<td>170</td>
</tr>
<tr>
<td>Gouy effect</td>
<td>244, 252</td>
</tr>
<tr>
<td>Grand Interferometer à Deux Télescopes, see “G2T”</td>
<td></td>
</tr>
<tr>
<td>Gray code, 152</td>
<td></td>
</tr>
<tr>
<td>gravitational lensing and microlensing, 16–7</td>
<td>seeing, 293</td>
</tr>
<tr>
<td>guide star</td>
<td>114</td>
</tr>
<tr>
<td>laser, 115</td>
<td></td>
</tr>
<tr>
<td>habitable zone (around star)</td>
<td>232, 291</td>
</tr>
<tr>
<td>Hanbury Brown, R., 6, 56, 141, 149, 154</td>
<td></td>
</tr>
<tr>
<td>Hartmann–Shack sensor</td>
<td>111–2, 114</td>
</tr>
<tr>
<td>Herbig Ae/Be stars</td>
<td>268</td>
</tr>
<tr>
<td>heterodyne technique</td>
<td>78–81, 166–7, 185–6, 205</td>
</tr>
<tr>
<td>HgCdTe detectors</td>
<td>203, 206</td>
</tr>
<tr>
<td>Hipparcos star catalog</td>
<td>161</td>
</tr>
<tr>
<td>hologram, adaptive</td>
<td>257–8</td>
</tr>
<tr>
<td>holoography, speckle</td>
<td>137</td>
</tr>
<tr>
<td>Hooke, R., 10</td>
<td></td>
</tr>
<tr>
<td>Hubble space telescope</td>
<td>2, 235, 249, 258, 268, 271–3</td>
</tr>
<tr>
<td>Huygens, C., 10</td>
<td></td>
</tr>
<tr>
<td>principle, 15ff, 28, 92, 105</td>
<td></td>
</tr>
<tr>
<td>wavelets, 16</td>
<td></td>
</tr>
<tr>
<td>Huygens–Kirchhof theory</td>
<td>15, 30, 105</td>
</tr>
</tbody>
</table>
Index

hydrogen maser, 83
hypertelescope, 34, 78, 212ff, 278, 280–1, 283, 314
in space, 289–92
I2T, 163, 166, 169, 179, 186–8
IOTA, xxxi, 175–6, 179, 202–3
astronomical results, 267–70
IONIC, 175–6, 202, 210
image intensifier, 115, 122, 128, 131–2
image-plane interference, 32
see also “Fizeau configuration”
impedance, wave, 296
indistinguishable photons, 44
infrared aperture masking, 125, 268
beam combiners, 174–5
camera, 207
coronagraphy, 250
detectors, 59–62, 202–3, 206
exo-planet detection, 234–5, 241, 247, 275, 285–8
interferometry, 52, 61–2, 79, 92, 109, 115, 184–5, 193–4, 197, 201–8, 265–8, 277, 288
speckle interferometry, 133, 273–5
Infrared Optical Telescope Array, see “IOTA”
Infrared Spatial Interferometer, see “ISI”
InSb infrared camera, 207
integrated optics, 173
intensity interferometer, 6, 52, 56–8, 65, 123, 141ff, 190, 208
see also “Narrabri interferometer”
intensity correlation, 55–6, 141ff
interference, 24ff
destructive, in nulling interferometry, 192, 240–1
interference fringes, 10, 31ff, 71
interference function, 35, 215ff
interferometer, 24
Mach–Zehnder, 201
Michelson, 24–7, 144
Sagnac, 173–4, 245–6
see also under specific names
Interféromètre à Deux Télescopes, see “I2T”
intermediate frequency, 79, 205
inverse square law, 297
irradiance, 297, 316
Isaac Newton Telescope, 121
ISI, 62, 79, 163, 166, 185, 205–8
astronomical results, 268
isoplanatic patch, 100–1, 110, 114–5, 136–7, 162, 177, 276
definition, 93, 100
wavelength dependence 107–8, 115
James Webb space telescope, 250
Jodrell Bank Observatory, 148
Jupiter, contrast ratio, 234, 246
reflex motion of Sun due to, 204
satellites of (Galilean), 4, 120, 236, 272
kinematic mount, 197
Keck telescopes, 2, 126, 161, 197, 212, 278
interferometer, 62, 171, 179, 196–7, 240, 242, 272
astronomical results, 265, 268–70, 273–4
Kepler, J., 271
Kiloparsec Explorer for Optical Planet Search (KEOPS), 280
Kitt Peak Observatory, 185
Kirchhoff, G., 15, 30
Knox–Thompson algorithm, 134–6, 272
Kolmogorov, A. N., 93
turbulence theory, 93ff
Lagrange points, 286
Lallemand electronic camera, 121
Large Binocular Telescope, see “LBT”
laser, CO2, 185, 206–8
guide star, 115, 259
He-Ne, 185
interferometer, 168
metrology, 162, 203–4
lattice vector, of array, 34, 219–20
Labeyrie, A., 6, 122, 130, 186
LBT, 170, 191, 241–2
lead zirconium titanate (PZT), 113
lensing effects, in atmosphere, 92, 104
gravitational, 16–17
life, conditions for, 289
Lick observatory, Mount Hamilton, 4, 120, 272
limb-darkening, 2, 72–3, 134, 183, 246, 267
model for, 50–1
effect on angular diameter determination, 51, 152, 154, 262–4
LISA, 285
local oscillator, 79, 185, 205–7
Lyot, B., 248
coronagraph, 248–51, 258
Observatory, 121, 130, 248
stop, 248–53, 258
Mach–Zehnder interferometer, 202
Magdelena Ridge observatory interferometer (MROI), 189, 278–9
magnitude of star, definition, 148
flux, as function of, 148, 316
Marčhal’s equation, 253–5
Mark-III interferometer, 163, 184, 189, 203, 279
astronomical results from, 264, 273
Mars, 232
Marseille Observatory, 3
masking by non-redundant array, see “array”
Mauna Kea, Hawaii, 175, 196, 228, 283–4
Maxwell, J. C. 19
equations, 19–20, 28, 233, 295–9
MEM (maximum entropy method), 77, 270
membrane deformable mirror, 113
Mercury, 185
Mertz corrector, 226–7, 289–90
Michelson, A. A., 2, 24, 32, 72–3, 122, 124, 171, 176, 184, 187, 224
configuration (pupil plane interference), 27–8, 72, 180, 202
interferometer, 24–7, 72, 144, 244
stellar (beam) interferometer, 4–6, 64–5, 141, 145, 156, 164, 166
astronomical results from, 4, 6, 263–4
as pupil densifier, 224
non-planar, 246
nulling mode, 241–2
“refractometer” concept, 72, 241
optical description, 5, 159–60
Michelson–Morley experiment, 3
microchannel plate intensifier, 131
microlens (lenslet) array, 111–2, 228–30
microlensing, gravitational, 17
Mikata Optical and Infrared Array, see “MIRA-I2”
Mira variable star, 125, 267
MIRA-I2, 164, 175, 193
MMT (multi-mirror telescope), 242
modulation, 39, 198
modulation transfer function (MTF), 39
moiré fringes, 310–1
mosaic mirror, 236
Mount Graham Observatory, 191
Mount Hamilton, Lick Observatory, 4, 120, 272
Mount Wilson Observatory, 4, 88, 121–2, 189, 200, 224
Narrabri interferometer, 6, 56, 141–2, 149–50, 154, 160, 280
astronomical results from, 154–5, 264
Navy Prototype Optical Interferometer, see “NPOI” near-field diffraction, 87, 311
nebula, 271
neutron star imager, 164, 223, 292–3
Newton’s rings, 10, 26
Newtonian telescope, 229
Nisenson, P., xxx
noise, 56, 61, 223, 256
detection, 58
statistics, 90
photon-rich measurement, 182–3
photon-starved measurement, 182–4
photonic crystal, 291
photosynthesis, 292
Pic du Midi (Bernard Lyot) Observatory, 121, 130, 248
piezoelectric devices, 113–4
pinwheel structures (of stars), 269
piston correction (adaptive optics), 110, 163, 176, 183, 281
Planck, M., 59
planet search, extrasolar, 17, 232, 284
Pluto-Charon system, 275
point spread function, 37–9, 86, 178, 222, 281–2
apodization of, 237–40, 288
atmospheric, 99, 117–8, 128, 138
of hypertelecope, 213ff
of non-redundant array, 197
synthetic, in aperture synthesis, 67ff, 284
Poisson statistics, 57–60, 130, 147, 181, 256, 259
polarization, 15, 27, 8, 177, 191, 233, 244
circular and elliptic, 245, 297, 299
change on reflection, 164, 172, 201, 242
Pollux, (β-Gem), 229–30
Poynting vector, 296–7
power spectrum, 301
atmospheric, 103–4
spatial, of image, 129, 134
prolate function, 238
proper motion, 184, 273
PSF, see “point spread function”
PTL, 162, 171, 193–4, 272, 274, 279, 286
astronomical results from, 268
pulsating star, 161, 266–7
pupil-plane interference, 27, 164, 171, 179, 241
see also “Michelson configuration”
pupil densification, see “densified pupil imaging”
PZT (lead zirconium titanate), 113–4
quadrant detector (quad cell), 177, 192
quadruple star system, 270
quantum efficiency, 57, 60, 115, 121, 148
quantum interpretation, of aperture synthesis, 81–3
of intensity interferometry, 146–7
quantum theory, of light, 60
do detection, 57–62
quasimonochromatic light, 41, 52
radio astronomy, 64, 81, 121, 141, 151
Rayleigh resolution limit, 38
phase error tolerance, 254, 294
scattering, 115
random lattice, see “array, random”
reciprocal lattice or array, 34–5, 219–20
vectors, 35
rect function, definition and Fourier transform, 303–4
Relaux triangle, 71, 84
reference star, 93, 110, 112, 195
correction of dispersion, 109, 132, 165–7
dispersion, atmospheric, 109
resolution, angular, 1–2, 65, 158, 236
spatial, 1
resel (resolution element), 78, 281, 290–1
retro-reflector, 168, 190
Reynolds number, 94ff
Risley prism, 167, 190
Ritchie–Chretien telescope, 164
Ryle, M., 6, 64
Sagnac interferometer, 173–4, 245–6
sampling, 64–6, 126, 303, 307–10
Saturn, 272
scalar wave approximation (diffraction), 28–31, 233
Schmidt, M., 122
Schmidt telescope, 164, 224
Schwarzschild, K., 4
Schwarzschild combination, 206
scintillation, 103, 108, 176
seeing, 37, 88, 99, 176, 210
gravitational, 294
shift-and-add method, 123, 273
siderostat, 163, 189, 190, 198, 202, 204
signal-to-noise ratio (SNR), 59, 142, 172, 182, 255
SIM PlanetQuest, 288–9
sinc function, definition, 31, 303
Sirius, 149, 152, 154, 156, 190
A and B, 237
sodium scattering in atmosphere, 115
solar corona, 233, 246–7
solar surface features, 275–6
sonne function, 238
space arrays, formation flying, 212, 284ff
telescopes, 232
Space Interferometry Mission, see “SIM”
spatial filter, 117
spatial frequency, definition, 29, 301
spectroscopy, high resolution, 208
speckle, 52, 88, 164, 171, 213, 236
bright and dark, 18

Index

quantum interpretation, of aperture synthesis, 81–3
of intensity interferometry, 146–7
quantum theory, of light, 60
do detection, 57–62
quasimonochromatic light, 41, 52
radio astronomy, 64, 81, 121, 141, 151
Rayleigh resolution limit, 38
phase error tolerance, 254, 294
scattering, 115
random lattice, see “array, random”
reciprocal lattice or array, 34–5, 219–20
vectors, 35
rect function, definition and Fourier transform, 303–4
Relaux triangle, 71, 84
reference star, 93, 110, 112, 195
correction of dispersion, 109, 132, 165–7
dispersion, atmospheric, 109
resolution, angular, 1–2, 65, 158, 236
spatial, 1
resel (resolution element), 78, 281, 290–1
retro-reflector, 168, 190
Reynolds number, 94ff
Risley prism, 167, 190
Ritchie–Chretien telescope, 164
Ryle, M., 6, 64
Sagnac interferometer, 173–4, 245–6
sampling, 64–6, 126, 303, 307–10
Saturn, 272
scalar wave approximation (diffraction), 28–31, 233
Schmidt, M., 122
Schmidt telescope, 164, 224
Schwarzschild, K., 4
Schwarzschild combination, 206
scintillation, 103, 108, 176
seeing, 37, 88, 99, 176, 210
gravitational, 294
shift-and-add method, 123, 273
siderostat, 163, 189, 190, 198, 202, 204
signal-to-noise ratio (SNR), 59, 142, 172, 182, 255
SIM PlanetQuest, 288–9
sinc function, definition, 31, 303
Sirius, 149, 152, 154, 156, 190
A and B, 237
sodium scattering in atmosphere, 115
solar corona, 233, 246–7
solar surface features, 275–6
sonne function, 238
space arrays, formation flying, 212, 284ff
telescopes, 232
Space Interferometry Mission, see “SIM”
spatial filter, 117
spatial frequency, definition, 29, 301
spectroscopy, high resolution, 208
speckle, 52, 88, 164, 171, 213, 236
bright and dark, 18

in coronography, 249, 254–5, 258
in hypertelescope, 214, 217, 222
speckle holography, 137
speckle fringe or pattern, 18, 89, 115–7, 121, 188, 196, 210, 313–5
speckle interferometry, 6, 90, 122–3, 126ff, 139, 214, 231
astronomical results, 122, 129, 133, 267, 270–1, 274–6
speckle masking, 72, 123, 126, 136–7, 155
astronomical results, 136–7, 272
spectral, 139
see also “triple correlation”
spectral bands, definitions, 316
spherical aberration, 244–5, 293
correction of, 225, 227
square aperture, diffraction by, 32, 237
square pulse, or “top-hat” function, see “rect”
Stachnik, R. V., 122, 130
star, binary, see “binary star”
circular, coherence function due to, 49, 72
starlight leakage, in coronagraphy, 245–7, 266
star-tracking, 175ff
stellar diameter, 184, 262
atmosphere, 205, 262
Stéphan, M., 3, 161, 176
Strehl ratio, 255
structure function, turbulent, 95ff
sub-aperture, definition, 158
super-Poisson statistics, 57–8, 146–7
supergiant star, 125, 262, 265
supermassive star, 136
superposition principle, 17
support, of function, 69
SUSI, 156, 163–4, 169, 170–2, 177–9, 189–91
astronomical results, 271
Sydney University Stellar Interferometer, see “SUSI”
synchronous switching, 151–2
T-Tauri disk, 268
Taylor, G. I., 20, 102
telescopes (types) 163–4
Cassegrain, 164–5, 170, 194, 198, 202, 285
Galilean, 214ff
Gregorian, 170
Newtonian, 229
radio, 225–6, 278, 281
Ritchie–Chretien, 164
Schmidt, 164, 224
Terrestrial Planet Finder, see “TPF”
tip-tilt correction, 114, 159, 171–2, 180, 281
see also “adaptive optics”
applications, 189, 191–3, 196, 198, 200, 206–7
TiO absorption band, 133, 265, 267
Titan, 274
topological phase, see “geometrical phase”
TPF-I, 246, 285, 288
traveling salesman problem, 71
triple correlation, 90, 75, 123, 136–9
triple star, image of, 205
Index

325

trombone, optical, see “delay-line”
turbulence, see “atmospheric turbulence”
twinkling of star, 92–3, 103, 176
 intensity, 146

(u, v) coordinates, definition, 65
(u, v) plane, in aperture synthesis, 40, 49, 65ff, 86,
 184, 209, 221
 coverage, 68–71, 161, 193, 196–7, 265, 278, 281
 definition, 49, 65
 umklapp process (phonon), 221
 uncertainty principle, 82
 unit cell, of array, 34

vacuum field, 22
variable stars, 133, 266–7
Vaughan, A., 122
velocity, phase or wave, 14, 296
 group, 14
 of light, 296
Venus, 232
very long baseline interferometry (VLBI), 68
 Very Large Telescope, see “VLT”
 Interferometer, see “VLTI”
Virgo cluster, 1
viscosity, kinematic, 94
visibility of fringes, 3, 72, 124, 145, 190, 263
 measurement, 180, 183, 197–8
 relationship to coherence function, 45
VLT, 250, 275
 VLTI, 62, 171, 192, 208–10, 224, 274
 astronomical results, 263–4, 267

wavefront, definition, 14
 distortion, measurement of, 111–2
 correction in adaptive optics, 110–2
 wavelength, 10, 14
 dependence of atmos. effects on, 108–9
 bands, definition, 316
 wavelets, Huygens’, 16
 wave vector, 15, 296
 wave, electromagnetic, 15, 295ff,
 plane, 15, 296
 spherical, 296
 longitudinal, 15
 transverse, 15
 mixing, 78
 velocity, 14, 296
 Wiener–Khinchin theorem, 49, 307
 Wiener deconvolution, 77, 86
 Wilson, D., 84
 Wolf–Rayet stars, 268–9
X-ray crystallography, see “crystallography”
Yerkes telescope, 88
Young, T., 9–11
 fringes, 4, 11, 20, 31ff, 120, 123
 YSO (Young stellar object) 268
Zernike, F., 3, 41
 phase contrast microscope, 239
 see also “van Cittert-Zernike theorem”
 zero-point field, 22
 zero-magnitude star, 62
 zodiacal light, 223, 234–5