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Mathematical toolbox

This book is about mathematical models coming from several
fields of science and economics that are described by difference
or differential equations. Therefore we begin by presenting basic
concepts and tools from the theory of difference and differential
equations, which will allow us to understand and analyse these
models. The multitude of problems that can be dealt with using
so few techniques is a testimony to the unifying power of mathe-
matics.

1.1 Difference equations

Since difference equations are conceptually simpler, we begin with
them. The reader should be aware that we present here a bare
minimum of results that are necessary to analyse of the examples
in this book. A comprehensive theory of difference equations can
be found for example in (Elaydi, 2005).

We consider difference equations which can be written in the
form

xn+k = F (n, xn, . . . , xn+k−1), n ∈ N0, (1.1)

where k ∈ N0 = {0, 1, 2, . . .} is a fixed number and F is a given
function of k + 1 variables. Such an equation is called a differ-
ence equation of order k. If F does not explicitly depend on n,
then we say that the equation is autonomous. Furthermore, if F

depends linearly on xn, . . . , xn+k−1, then we say that (1.1) is a
linear equation. Otherwise, we say that it is nonlinear.
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2 Mathematical toolbox

If we are given k initial values x1, . . . , xk, then the term xk+1

is uniquely determined by (1.1) and then all other terms can
be found by successive iterations. These terms form a sequence
(xn)n∈N0 which we call a solution to (1.1). Thus the problems of
existence and uniqueness of solutions, which play an essential role
in the theory of differential equations, are here largely irrelevant.
The problem, however, is to find a closed form of the solution;
that is, a formula defining the terms of the sequence (xn)n∈N0 ex-
plicitly in terms of the variable n. While, in general, finding such
an explicit solution is impossible, we shall discuss several cases
when it can be accomplished. In more difficult situations we have
to confine ourselves to qualitative analysis which will be discussed
in Chapter 4.

1.1.1 First-order linear difference equations

The general first-order difference equation has the form

xn+1 = anxn + gn, n ≥ 0, (1.2)

where (an)n∈N0 and (gn)n∈N0 are given sequences. It is clear that
using (1.2) we may calculate any element xn provided we know
only one initial point, so that we supplement (1.2) with an initial
value x0. It is easy to check, by induction, that the solution is
given by

xn = x0

n−1∏
k=0

ak +
n−1∑
k=0

gk

n−1∏
i=k+1

ai, (1.3)

where we adopt the convention that
n−1∏

n
= 1. Similarly, to simplify

notation, we put
j∑

k=j+1

= 0.

Exercise 1.1 Show that if in (1.2) we have an = a for all n ≥ 0,

then (1.3) takes the form

xn = anx0 +
n−1∑
k=0

an−k−1gk. (1.4)
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1.1 Difference equations 3

If, moreover gn = g for n ≥ 0, then

xn =
{

anx0 + g an−1
a−1 if a �= 1,

x0 + gn if a = 1.
(1.5)

1.1.2 Linear difference equations of higher order

Though the book mainly is concerned with equations of first order,
in some examples we will need solutions to higher-order linear
equations with constant coefficients; that is, equations of the form

xn+k + a1xn+k−1 + · · · + akxn = 0, n ∈ N0, (1.6)

where k is a fixed number, called the order of the equation, and
a1, . . . , ak are known numbers. This equation determines the val-
ues of xm, m > k, by k preceding values. Thus, we need k initial
values x0, x1, . . . , xk−1 to start iterations. The general theory of
such equations requires tools from linear algebra, which are be-
yond the scope of this book, see (Elaydi, 2005). Therefore we only
will present basic results which easily can be checked to hold true
in particular examples.

To find the general solution to (1.6), we build the so-called
characteristic equation

λk + a1λ
k−1 + · · · + ak = 0. (1.7)

If this equation has k distinct roots λ1, . . . , λk, then the general
solution is given by

xn = C1λ
n
1 + · · · + Ckλn

k , n ≥ k, (1.8)

where C1, . . . , Ck are constants that are to be determined so that
(yn)n∈N0 satisfies the initial conditions for n = 0, . . . k − 1. If,
however, there is a multiple root, say λi, of multiplicity ni, then in
the expansion (1.8) we must use ni terms {λn

i , nλn
i , . . . , nni−1λn

i }.

1.1.3 Nonlinear equations

As we said earlier, most difference equations cannot be solved ex-
plicitly. In some cases, however, a smart substitution could reduce
them to a simpler form. In this subsection we present two classes
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4 Mathematical toolbox

of solvable nonlinear equations, which will be used later. Some
other cases are discussed in Section 2.4.

The homogeneous Ricatti equation. Consider the equation

xn+1xn + anxn+1 + bnxn = 0, n ∈ N0, (1.9)

where (an)n∈N0 and (bn)n∈N0 are given sequences with non-zero
elements. Then the substitution

yn =
1
xn

transforms (1.9) into

bnyn+1 + anyn + 1 = 0, (1.10)

which is a first-order linear equation. We note that in the above
transformation we had to assume xn �= 0. If, however, xn = 0 for
some n, then xm = 0 for m > n.

The inhomogeneous Ricatti equation. The inhomogeneous
Riccati equation is

xn+1xn + anxn+1 + bnxn = cn, n ∈ N0, (1.11)

where (an)n∈N0 , (bn)n∈N0 and (cn)n∈N0 are given sequences. Upon
the substitution

xn =
yn+1

yn
− an,

it becomes(
yn+2

yn+1
− an+1

)(
yn+1

yn
− an

)
+ an

(
yn+2

yn+1
− an+1

)
+ bn

(
yn+1

yn
− an

)
= cn.

Simplifying, we obtain the second-order linear equation

yn+2 + (bn − an+1)yn+1 − (cn + anbn)yn = 0. (1.12)

In particular, if the sequences (an)n∈N0 , (bn)n∈N0 and (cn)n∈N0

are constant, then the above equation is explicitly solvable by the
method described in Section 1.1.2.
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1.2 Differential equations – an introduction 5

1.2 Differential equations – an introduction

The present book is mostly about applying differential equations
to concrete models, thus we refer the reader to dedicated texts,
such as (Braun, 1983; Glendinning, 1994; Schroers, 2011; Stro-
gatz, 1994), to learn more about the theory of differential equa-
tions. However, to make the presentation self-consistent, we pro-
vide some basic facts and ideas.

In this book we shall be solely concerned with ordinary differ-
ential equations (ODEs) that can be written in the form

y(n) = F (t, y, y′, . . . , y(n−1)) = 0, (1.13)

where F is a given scalar function of n + 1 variables and y(k),

for k = 1, . . . , n, denotes the derivative of order k with respect to
t. For lower order derivatives we will use the more conventional
notation y(1) = y′, y(2) = y′′, etc. As with the difference equations,
we say that (1.13) is autonomous if F does not depend on t and it
is linear if F is linear in y, y′, . . . , y(n−1). The order of the equation
is the order of the highest derivative appearing in it.

To solve the ODE (1.13) means to find an n-times continuously
differentiable function y(t) such that for any t (from some inter-
val), (1.13) becomes an identity. Thus, if we are given a function
y, it is easy to check whether it is a solution of (1.13) or not.
However, in contrast to difference equations, finding a solution to
(1.13) is a difficult, and often impossible, task. A quick reflection
brings to mind three questions relevant to solving a differential
equation:

(i) can we be sure that a given equation possesses a solution at
all?

(ii) if we know that there is a solution, are there systematic
methods for finding it?

(iii) having found a solution, can we be sure that there are no
other solutions?

Question (i) is usually referred to as the existence problem
for differential equations, and Question (iii) as the uniqueness
problem. Unless we deal with very simple situations, these two
questions should be addressed before attempting to find a solution.
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6 Mathematical toolbox

After all, what is the point of trying to solve an equation if we
do not know whether the solution exists, or whether the one we
found is unique. Let us discuss briefly Question (i) first. Roughly
speaking, we can come across the following situations:

(a) no function exists which satisfies the equation;

(b) the equation has a solution but no one knows what it looks
like;

(c) the equation can be solved in a closed form.

Case (a) is not very common in mathematics and it should never
happen in mathematical modelling. Indeed, if a given equation
was an exact reflection of a real life phenomenon, then the fact
that this phenomenon exists would ensure that this equation can
be solved. However, models are imperfect reflections of the real-
ity and therefore it may happen that in the modelling process we
missed some crucial facts, rendering the final equation unsolvable.
Thus, establishing solvability of the equation constructed in the
modelling process serves as an important first step in validating
the model. Unfortunately, these problems are usually very diffi-
cult and require quite advanced mathematics that is beyond the
scope of this course. We shall, however, provide basic theorems
pertaining to this question that are sufficient for the discussed
problems.

Case (b) may look somewhat enigmatic but, as we said above,
there are advanced theorems allowing us to ascertain the existence
of solutions without actually displaying them. Actually, many of
the most interesting equations appearing in applications do not
have known explicit solutions. It is important to realize that even
if we do not know a formula for the solution, the fact that one does
exist means we can find its numerical or graphical representation
to any reasonable accuracy. Also, very often we can find impor-
tant features of the solution without knowing its explicit formula.
These features include e.g., long time behaviour; that is, whether
it settles at a certain equilibrium value or oscillates, whether it is
monotonic or periodic, etc. These questions will be studied in the
final part of the book.

Some examples, when the situation described in (c) occurs and
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1.3 Some equations admitting closed form solutions 7

which thus also partially address Question (ii), are discussed in
Section 1.3 below.

Having dealt with Questions (i) and (ii) let us move to the
problem of uniqueness. Typically (1.13) determines a family of
solutions, parametrised by several constants, rather than a single
function. Such a class is called the general solution of the equa-
tion. By imposing an appropriate number of side conditions we
specify the constants thus obtaining a special solution – ideally
one member of the class.

A side condition may take all sorts of forms, such as ‘at t = 15,
y must have the value of 0.4’ or ‘the area under the curve y = y(t)
between t = 0 and t = 24 must be 100’. Very often, however, it
specifies the initial value y(0) of the solution and the derivatives
y(k)(0) for k = 1, . . . , n − 1. In this case the side conditions are
called the initial conditions. Problems consisting of (1.13) with
initial conditions are called initial value problems or Cauchy prob-
lems

1.3 Some equations admitting closed form solutions

In this section we shall provide a brief overview of methods for
solving differential equations which will appear in this book. This
shows that in some situations the answer to Question (ii) of the
previous section is affirmative. It is important to understand, how-
ever, that there is a deeper theory behind each method and due
caution should be exercised when applying the formulae listed be-
low, see (Braun, 1983; Schroers, 2011; Strogatz, 1994).

1.3.1 Separable equations

Separable equations are equations which can be written as

y′ = g(t)h(y), (1.14)

where g and h are known functions. Constant functions y ≡ ȳ, such
that h(ȳ) = 0, are solutions to (1.14). They are called stationary
or equilibrium solutions.

To find the general solution, we assume that h(y) is finite and
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8 Mathematical toolbox

nowhere zero, and divide both sides of (1.14) by h(y) to get

1
h(y)

y′ = g(t). (1.15)

Denoting H(y) =
∫

dy/h(y), (1.15) can be written as

(H(y(t)))′ = g(t).

Integrating, we obtain the solution in the implicit form,

H(y(t)) =
∫

g(t)dt + c, (1.16)

where c is an arbitrary constant. Since, by assumption, H ′(y) =
h−1(y) �= 0, we can use the inverse function theorem (Courant
and John, 1999) to claim that the function H is locally invertible
and thus the explicit solution can be found, at least locally, as

y(t) = H−1

(∫
g(t)dt + c

)
, (1.17)

with c depending on the side conditions.

1.3.2 First-order linear differential equations

The general first-order linear differential equation is of the form

y′ + a(t)y = b(t), (1.18)

where a and b are known continuous functions of t. One method
of solving (1.18) is to multiply both sides of (1.18) by the so-called
integrating factor μ which is a solution to

μ′ = μa(t),

i.e., μ(t) = e
∫

a(t)dt. Then

μ(t)y′ + μ(t)a(t)y = μ(t)b(t)

can be written as

(μ(t)y(t))′ = μ(t)b(t),
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1.3 Some equations admitting closed form solutions 9

and thus

y(t) =
1

μ(t)

(∫
μ(t)b(t)dt + c

)
(1.19)

= exp
(
−
∫

a(t)dt

)(∫
b(t) exp

(∫
a(t)dt

)
dt + c

)
,

where c is a constant of integration which is to be determined from
the initial conditions. It is worthwhile noting that the solution is
the sum of the general solution to the homogeneous equation (that
is, with b(t) ≡ 0),

c exp
(
−
∫

a(t)dt

)
,

and a particular solution to the full equation (1.18).

1.3.3 Equations of homogeneous type

A differential equation that can be written in the form

y′ = f
(y

t

)
, (1.20)

where f is a function of the single variable z = y/t is said to be of
homogeneous type. To solve (1.20), let us make the substitution

y = tz, (1.21)

where z is the new unknown function. Then, by the product rule,

y′ = z + tz′

and (1.20) becomes

tz′ = f(z) − z. (1.22)

Equation (1.22) is a separable equation and so it can be solved as
in Section 1.3.1.

1.3.4 Equations that can be reduced to first-order
equations

Some higher-order equations can be reduced to first-order equa-
tions. We shall discuss two such cases for second-order equations.
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10 Mathematical toolbox

Equations that do not contain the unknown function. If
we have an equation of the form

F (t, y′, y′′) = 0, (1.23)

then the substitution z = y′ reduces this equation to the first-
order equation

F (t, z, z′) = 0. (1.24)

If

z = φ(t, C)

is the general solution to (1.24), where C is an arbitrary constant,
then y is the solution of

y′ = φ(t, C),

so that

y(t) =
∫

φ(t, C)dt + C1.

Equations that do not contain the independent variable.
Let us consider the equation

F (y, y′, y′′) = 0, (1.25)

that does not involve the independent variable t. Such an equation
also can be reduced to a first-order equation as long as y′ �= 0;
that is, if there are no turning points of the solution. Then the
derivative y′ locally is a function of y; that is, we can write y′ =
g(y) for some function g. Indeed, by the inverse function theorem,
see (Courant and John, 1999), the function y = y(t) is locally
invertible provided y′ �= 0 and, writing t = t(y), we can define
g(y) = y′(t(y)). Using the chain rule we obtain

y′′ =
d

dt
y′ =

dg

dy

dy

dt
= y′ dg

dy
= g(y)

dg

dy
. (1.26)

Substituting (1.26) into (1.25) gives a first-order equation with y

as an independent variable,

F

(
y, g, g

dg

dy

)
= 0. (1.27)
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