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Heights and measures on analytic spaces.
A survey of recent results,

and some remarks

Antoine Chambert-Loir

The first goal of this paper was to survey my definition in [19] of measures

on non-archimedean analytic spaces in the sense of Berkovich and to ex-

plain its applications in Arakelov geometry. These measures are analo-

gous the measures on complex analytic spaces given by products of first

Chern forms of hermitian line bundles.1 In both contexts, archimedean

and non-archimedean, they are related with Arakelov geometry and the

local height pairings of cycles. However, while the archimedean measures

lie at the ground of the definition of the archimedean local heights in

Arakelov geometry, the situation is reversed in the ultrametric case: we

begin with the definition of local heights given by arithmetic intersection

theory and define measures in such a way that the archimedean formu-

lae make sense and are valid. The construction is outlined in Section 1,

with references concerning metrized line bundles and the archimedean

setting. More applications to Arakelov geometry and equidistribution

theorems are discussed in Section 3.

The relevance of Berkovich spaces in Diophantine geometry has now

made been clear by many papers; besides [19] and [20] and the gen-

eral equidistribution theorem of Yuan [59], I would like to mention the

works [38, 39, 40, 30] who discuss the function field case of the equidis-

tribution theorem, as well as the potential theory on non-archimedean

curves developed simultaneously by Favre, Jonsson & Rivera-Letelier

1 M. Kontsevich and Yu. Tschinkel gave me copies of unpublished notes from the
years 2000–2002 where they develop similar ideas to construct canonical
non-archimedean metrics on Calabi–Yau varieties; see also [45, 46].
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[32, 33] and Baker & Rumely for the projective line [8], and in general

by A. Thuillier’s PhD thesis [55]. The reader will find many important

results in the latter work, which unfortunately is still unpublished at the

time of this writing.

Anyway, I found useful to add examples and complements to the ex-

isting (and non-) literature. This is done in Section 2. Especially, I dis-

cuss in Section 2.2 the relation between the reduction graph and the

skeleton of a Berkovich curve, showing that the two constructions of

measures coincide. Section 2.3 shows that the measures defined are of a

local nature; more generally, we show that the measures vanish on any

open subset where one of the metrized line bundles involved is trivial.

This suggests a general definition of strongly pluriharmonic functions

on Berkovich spaces, as uniform limits of logarithms of absolute values

of invertible holomorphic functions. (Strongly pluriharmonic fonctions

should only exhaust pluriharmonic functions when the residue field is

algebraic over a finite field, but not in general.) In Section 2.4, we dis-

cuss polarized dynamical systems and explain the construction of canon-

ical metrics and measures in that case. We also show that the canon-

ical measure vanishes on the Berkovich equicontinuity locus. In fact,

what we show is that the canonical metric is “strongly pluriharmonic”

on that locus. This is the direct generalization of a theorem of [52] for

the projective line (see also [8] for an exposition); this generalizes also a

theorem of [44] that Green functions are locally constant on the classi-

cal equicontinuity locus. As already were their proofs, mine is a direct

adaptation of the proof of the complex case [43]. In Section 2.5, follow-

ing Gubler [41], we finally describe the canonical measures in the case of

abelian varieties.

In Section 3, we discuss applications of the measures in Diophantine

geometry over global fields. Once definitions are recalled out in Sec-

tion 3.1, we briefly discuss in Section 3.2 the relation between Mahler

measures (i.e., integration of Green functions against measures) and

heights. In Section 3.3, we survey the equidistribution theorems for Ga-

lois orbits of points of “small height”, following the variational method

of Szpiro–Ullmo–Zhang [54] and [59]. In fact, we describe the more gen-

eral statement from [20]. Finally, Section 3.4 discusses positive lower

bounds for heights on curves. This is inspired by recent papers [5, 49]

but the method goes back to Mimar’s unpublished thesis [48]. A re-

cent preprint [58] of Yuan and Zhang establishes a similar result in any

dimension.
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1 Metrized line bundles and measures

1.1 Continuous metrics

1.1.1 Definition. — Let X be a topological space together with a

sheaf of local rings OX (“analytic functions”); let also CX be the sheaf

of continuous functions on X. In analytic geometry, local functions have

an absolute value which is a real valued continuous function, satisfying

the triangle inequality. Let us thus assume that we have a morphism of

sheaves OX → CX , written f �→ |f |, such that |fg| = |f | |g|, |1| = 1, and

|f + g| ≤ |f | + |g|.

A line bundle on (X,OX) is a sheaf L of OX -modules which is locally

isomorphic to OX . In other words, X is covered by open sets U such

that OU ≃ L|U ; such an isomorphism is equivalent to a non-vanishing

section εU ∈ Γ(U,L), also called a local frame of L.

If s is a section of a line bundle L on an open set U , the value

of s at a point x ∈ U is only well-defined as an element of the stalk

L(x), which is a κ(x)-vector space of dimension 1. (Here, κ(x) is the

residue field of OX at x.) Prescribing a metric on L amounts to

assigning, in a coherent way, the norms of these values. Formally, a

metric on L is the datum, for any open set U ⊂ X and any section

s ∈ Γ(U,L), of a continuous function ‖s‖U : U → R+, satisfying the

following properties:
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1. for any open set V ⊂ U , ‖s‖V is the restriction to V of the func-

tion ‖s‖U ;

2. for any function f ∈ OX(U), ‖fs‖ = |f | ‖s‖;

3. if s is a local frame on U , then ‖s‖ doesn’t vanish at any point of U .

One usually writes L for the pair (L, ‖·‖) of a line bundle L and a metric

on it.

Observe that the trivial line bundle OX has a natural “trivial” metric,

for which ‖1‖ = 1. In fact, a metric on the trivial line bundle OX is

equivalent to the datum of a continuous function h on X, such that

‖1‖ = e−h.

1.1.2 The Abelian group of metrized line bundles. — Isomor-

phism of metrized line bundles are isomorphisms of line bundles which

respect the metrics; they are called isometries. Constructions from ten-

sor algebra extend naturally to the framework of metrized line bundles,

compatibly with isometries. The tensor product of two metrized line

bundles L and M has a natural metrization such that ‖s⊗ t‖ = ‖s‖ ‖t‖,

if s and t are local sections of L and M respectively. Similarly, the dual

of a metrized line bundle has a metrization, and the obvious isomor-

phism L⊗ L∨ ≃ OX is an isometry. Consequently, isomorphism classes

of metrized line bundles on X form an Abelian group Pic(X). This group

fits in an exact sequence

0 → C (X) → Pic(X) → Pic(X),

where the first map associates to a real continuous function h on X the

trivial line bundle endowed with the metric such that ‖1‖ = e−h, and the

second associates to a metrized line bundle the underlying line bundle.

It is surjective when any line bundle has a metric (this certainly holds

if X has partitions of unity).

Similarly, we can consider pull-backs of metrized line bundle. Let

ϕ : Y → X be a morphism of locally ringed spaces such that |ϕ∗f | =

|f | ◦ ϕ for any f ∈ OX . Let L be a metrized line bundle on X. Then,

there is a canonical metric on ϕ∗L such that ‖ϕ∗s‖ = ‖s‖ ◦ ϕ for

any section s ∈ Γ(U,L). This induces a morphism of Abelian groups

ϕ∗ : Pic(X) → Pic(Y ).

1.2 The case of complex analytic spaces

1.2.1 Smooth metrics. — In complex analytic geometry, metrics are

a very well established tool. Let us first consider the case of the projective
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space X = P
n(C); a point x ∈ X is a (n + 1)-tuple of homogeneous

coordinates [x0 : · · · : xn], not all zero, and up to a scalar. Let π : C
n+1
∗ →

X be the canonical projection map, where the index ∗ means that we

remove the origin (0, . . . , 0). The fibers of π have a natural action of C
∗

and the line bundle O(1) has for sections s over an open set U ⊂ P
n(C)

the analytic functions Fs on the open set π−1(U) ⊂ C
n+1
∗ which are

homogeneous of degree 1. The Fubini-Study metric of O(1) assigns to

the section s the norm ‖s‖FS defined by

‖s‖FS ([x0 : · · · : xn]) =
|Fs(x0, . . . , xn)|

(
|x0|

2
+ · · · + |xn|

2
)1/2

.

It is more than continuous; indeed, if s is a local frame on an open set U,

then ‖s‖ is a C∞-function on U; such metrics are called smooth.

1.2.2 Curvature. — Line bundles with smooth metrics on smooth

complex analytic spaces allow to perform differential calculus. Namely,

the curvature of a smooth metrized line bundle L is a differential form

c1(L) of type (1, 1) on X. Its definition involves the differential operator

ddc =
i

π
∂∂.

When an open set U ⊂ X admits local coordinates (z1, . . . , zn), and

s ∈ Γ(U, L) is a local frame, then

c1(L)|U = ddc log ‖s‖
−1

=
i

π

∑

1≤j,k≤n

∂2

∂zj∂zk
log ‖s‖

−1
dzj ∧ dzk.

The Cauchy-Riemann equations (∂f/∂z = 0 for any holomorphic func-

tion f of the variable z) imply that this formula does not depend on the

choice of a local frame s. Consequently, these differential forms defined

locally glue to a well-defined global differential form on X.

Taking the curvature form of a metrized line bundle is a linear oper-

ation: c1(L ⊗M) = c1(L) + c1(M). It also commutes with pull-back: if

f : Y → X is a morphism, then f∗c1(L) = c1(f
∗L).

In the case of the Fubini-Study metric over the projective space P
n(C),

the curvature is computed as follows. The open subset U0 where the

homogeneous coordinate x0 is non-zero has local coordinates z1 =

x1/x0, . . . , zn = xn/x0; the homogeneous polynomial X0 defines a
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non-vanishing section s0 of O(1) on U0 and

log ‖s0‖
−1
FS =

1

2
log

⎛
⎝1 +

n∑

j=1

|zj |
2

⎞
⎠ .

Consequently, over U0,

c1(O(1)FS) =
i

π
∂∂ log ‖s0‖

−1
FS

=
i

2π
∂

(
n∑

k=1

zk

1 + ‖z‖
2 dzk

)

=
i

2π

n∑

j=1

1

1 + ‖z‖
2 dzj ∧ dzj −

i

2π

n∑

j,k=1

zkzj

(1 + ‖z‖
2
)2

dzj ∧ dzk.

In this calculation, we have abbreviated ‖z‖
2

=
∑n

j=1 |zj |
2
.

1.2.3 Products, measures. — Taking the product of n factors equal

to this differential form, we get a differential form of type (n, n) on the

n-dimensional complex space X. Such a form can be integrated on X

and the Wirtinger formula asserts that

∫

X

c1(L)n = deg(L)

is the degree of L as computed by intersection theory. As an example, if

X = P
1(C), we have seen that

c1(O(1)FS) =
i

2π(1 + |z|
2
)2

dz ∧ dz,

where z = x1/x0 is the affine coordinate of X \ {∞}. Passing in polar

coordinates z = reiθ, we get

c1(O(1)FS) =
1

2π(1 + r2)2
2rdr ∧ dθ

whose integral over C equals

∫

P1(C)

c1(O(1)FS) =

∫ ∞

0

1

2π(1 + r2)2
2rdr

∫ 2π

0

dθ =

∫ ∞

0

1

(1 + u)2
du = 1.
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1.2.4 The Poincaré–Lelong equation. — An important formula is

the Poincaré–Lelong equation. For any line bundle L with a smooth

metric, and any section s ∈ Γ(X, L) which does not vanish identically

on any connected component of X, it asserts the following equality of

currents2:

ddc log ‖s‖
−1

+ δdiv(s) = c1(L),

where ddc log ‖s‖
−1

is the image of log ‖s‖
−1

under the differential op-

erator ddc, taken in the sense of distributions, and δdiv(s) is the current

of integration on the cycle div(s) of codimension 1.

1.2.5 Archimedean height pairing. — Metrized line bundles and

their associated curvature forms are a basic tool in Arakelov geometry,

invented by Arakelov in [2] and developped by Faltings [31], Deligne [25]

for curves, and by Gillet-Soulé [34] in any dimension. For our con-

cerns, they allow for a definition of height functions for algebraic cy-

cles on algebraic varieties defined over number fields. As explained by

Gubler [35, 36], they also permit to develop a theory of archimedean

local heights.

For simplicity, let us assume that X is proper, smooth, and that all of

its connected components have dimension n.

Let L0, . . . , Ln be metrized line bundles with smooth metrics. For

j ∈ {0, . . . , n}, let sj be a regular meromorphic section of Lj and let

div(sj) be its divisor. The given metric of Lj furnishes moreover a func-

tion log ‖sj‖
−1

on X and a (1, 1)-form c1(Lj), related by the Poincaré–

Lelong equation ddc log ‖sj‖
−1

+ δdiv(sj) = c1(Lj). In the terminology of

Arakelov geometry, log ‖sj‖
−1

is a Green current (here, function) for the

cycle div(sj); we shall write d̂iv(sj) for the pair (div(sj), log ‖sj‖
−1

).

Let Z ⊂ X be a k-dimensional subvariety such that the divisors div(sj),

for 0 ≤ j ≤ k, have no common point on Z. Then, one defines inductively

the local height pairing by the formula:

(d̂iv(s0) . . . d̂iv(sk)|Z) = (d̂iv(s0) . . . d̂iv(sk−1)|div(sk|Z))

+

∫

X

log ‖sk‖
−1

c1(L0) . . . c1(Lk−1)δZ. (9.1)

2 The space of currents is the dual to the space of differential forms, with the
associated grading; in the orientable case, currents can also be seen as differential
forms with distribution coefficients.
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The second hand of this formula requires two comments. 1) The

divisor div(sk|Z) is a formal linear combination of (k − 1)-dimensional

subvarieties of X, and its local height pairing is computed by linearity

from the local height pairings of its components. 2) The integral of the

right hand side involves a function with singularities (log ‖sk‖
−1

) to be

integrated against a distribution: in this case, this means restricting the

differential form c1(L0) . . . c1(Lk−1) to the smooth part of Z, multiply-

ing by log ‖sk‖
−1

, and integrating the result. The basic theory of closed

positive currents proves that the resulting integral converges absolutely;

as in [34], one can also resort to Hironaka’s resolution of singularities.

It is then a non-trivial result that the local height pairing is symmetric

in the involved divisors; it is also multilinear. See [37] for more details,

as well as [34] for the global case.

1.2.6 Positivity. — Consideration of the curvature allows to define

positivity notions for metrized line bundles. Namely, one says that a

smooth metrized line bundle L is positive (resp. semi-positive) if its cur-

vature form is a positive (resp. a non-negative) (1, 1)-form. This means

that for any point x ∈ X, the hermitian form c1(L)x on the complex

tangent space TxX is positive definite (resp. non-negative). As a crucial

example, the line bundle O(1) with its Fubini-Study metric is positive.

The pull-back of a positive metrized line bundle by an immersion is pos-

itive. In particular, ample line bundles can be endowed with a positive

smooth metric; Kodaira’s embedding theorem asserts the converse: if a

line bundle possesses a positive smooth metric, then it is ample.

The pull-back of a semi-positive metrized line bundle by any morphism

is still semi-positive. If L is semi-positive, then the measure c1(L)n is a

positive measure.

1.2.7 Semi-positive continuous metrics. — More generally, both

the curvature and the Poincaré–Lelong equation make sense for metrized

line bundles with arbitrary (continuous) metrics, except that c1(L) has

to be considered as a current. The notion of semi-positivity can even be

extended to this more general case, because it can be tested by duality: a

current is positive if its evaluation on any nonnegative differential form

is nonnegative. Alternatively, semi-positive (continuous) metrized line

bundles are characterized by the fact that for any local frame s of L over

an open set U, the continuous function log ‖s‖
−1

is plurisubharmonic

on U. In turn, this means that for any morphism ϕ : D → U, where

www.cambridge.org/9781107648814
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D = D(0, 1) is the closed unit disk in C,

log ‖s‖
−1

(ϕ(0)) ≤
1

2π

∫ 2π

0

log ‖s‖
−1

(ϕ(eiθ))dθ.

Assume that L is semi-positive. Although products of currents are

not defined in general (not more than products of distributions), the

theory of Bedford–Taylor [10, 9] and Demailly [26, 27] defines a current

c1(L)n which then is a positive measure on X. There are two ways to

define this current. The first one works locally and proceeds by induction:

if u = log ‖s‖
−1

, for a local non-vanishing section s of L, one defines

a sequence (Tk) of closed positive currents by the formulae T0 = 1,

T1 = ddc u, . . . , Tk+1 = ddc(uTk) and c1(L)n = ddc(u)n is defined

to be Tn. What makes this construction work is the fact that at each

step, uTk is a well-defined current (product of a continuous function

and of a positive current), and one has to prove that Tk+1 is again

a closed positive current. The other way, which shall be the one akin

to a generalization in the ultrametric framework, consists in observing

that if L is a line bundle with a continuous semi-positive metric ‖·‖,

then there exists a sequence of smooth semi-positive metrics ‖·‖k on the

line bundle L which converges uniformly to the initial metric: for any

local section s, ‖s‖k converges uniformly to ‖s‖ on compact sets. The

curvature current c1(L) is then the limit of the positive currents c1(Lk),

and the measure c1(L)n is the limit of the measures c1(Lk)
n. (We refer

to [47] for the global statement; to construct the currents, one can in fact

work locally in which case a simple convolution argument establishes the

claim.)

An important example of semi-positive metric which is continuous,

but not smoth, is furnished by the Weil metric on the line bundle O(1)

on P
n(C). This metric is defined as follows: if U ⊂ P

n(C) is an open set,

and s is a section of O(1) on U corresponding to an analytic function Fs

on π−1(U) ⊂ C
n+1
∗ which is homogeneous of degree 1, then for any

(x0, . . . , xn) ∈ π−1(U), one has

‖s‖W =
|Fs(x0, . . . , xn)|

max(|x0| , . . . , |xn|)
.

The associated measure c1(O(1)W)n on P
n(C) is as follows, cf. [62, 47]:

the subset of all points [x0 : · · · : xn] ∈ P
n(C) such that |xj | = |xk| for

all j, k is naturally identified with the polycircle S
n
1 (map [x0 : · · · : xn] to

(x1/x0, . . . , xn/x0)); take the normalized Haar measure of this compact

group and push it onto P
n(C).
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1.2.8 Admissible metrics. — Let us say that a continuous metrized

line bundle is admissible if it can be written as L ⊗ M
∨
, where L

and M are metrized line bundles whose metrics are continuous and semi-

positive. Admissible metrized line bundles form a subgroup Picad(X)

of Pic(X) which maps surjectively onto Pic(X) if X is projective.

The curvature current c1(L) of an admissible metrized line bundle L is

a differential form of type (1, 1) whose coefficients are signed measures.

Its nth product c1(L)n is well-defined as a signed measure on X.

1.2.9 Local height pairing (admissible case). — The good ana-

lytic properties of semi-positive metrics allow to extend the definition

of the local height pairing to the case of admissible line bundles. In-

deed, when one approximates uniformly a semi-positive line bundle by

a sequence of smooth semi-positive line bundles, one can prove that the

corresponding sequence of local height pairings converges, the limit being

independent on the chosen approximation.

The proof is inspired by Zhang’s proof of the global case in [63] and

goes by induction. Let us consider, for each j, two smooth semi-positive

metrics on the line bundle Lj and assume that they differ by a fac-

tor e−hj . Then, the corresponding local height pairings differ from an

expression of the form

k∑

j=0

∫

Z

hjc1(L0) . . .
̂c1(Lj) . . . c1(Lk),

where the written curvature forms are associated to the first metric for

indices < j, and to the second for indices > j. This differential forms

are positive by assumption, so that the integral is bounded in absolute

value by

k∑

j=0

‖hj‖∞

∫

Z

c1(L0) . . .
̂c1(Lj) . . . c1(Lk)

=

K∑

j=0

‖hj‖∞ (c1(L0) . . . ĉ1(Lj) . . . c1(Lk)|Z),

where the last expression is essentially a degree. (In these formulae, the

factor with a hat is removed.) This inequality means that on the restric-

tion to the space of smooth semi-positive metrics, with the topology of

uniform convergence, the local height pairing is uniformly continuous.
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