Contents

Preface vii
Acknowledgements ix
Author biographies x

Chapter 1 Whole numbers 1
1A The number line 3
1B Addition 5
1C The standard addition algorithm 8
1D Subtraction 11
1E Multiplication 16
1F Combinations of operations and the distributive law 20
1G Place value 25
1H The standard multiplication algorithms 29
1I Division 33
1J The short division algorithm 39
1K The long division algorithm 42
1L Order of operations 45
1M Roman numerals 48
Review exercise 50
Challenge exercise 51

Chapter 2 Factors, multiples, primes and divisibility 55
2A Factors and multiples 56
2B Odd and even numbers 60
2C Prime and composite numbers 62
2D Powers of numbers 64
2E Using mental strategies to multiply and divide 68
2F Using powers in factorisation 73
2G Squares and square roots 76
2H Lowest common multiple and highest common factor 79
2I Divisibility tests 82
Review exercise 86
Challenge exercise 88
Strengthening multiplication tables skills 90
Chapter 3 An introduction to algebra

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td>Using algebra</td>
<td>92</td>
</tr>
<tr>
<td>3B</td>
<td>Algebraic notation</td>
<td>97</td>
</tr>
<tr>
<td>3C</td>
<td>Substitution</td>
<td>101</td>
</tr>
<tr>
<td>3D</td>
<td>Adding and subtracting like terms</td>
<td>104</td>
</tr>
<tr>
<td>3E</td>
<td>Brackets</td>
<td>107</td>
</tr>
<tr>
<td>3F</td>
<td>Multiplying terms</td>
<td>111</td>
</tr>
<tr>
<td>3G</td>
<td>Describing arrays, areas and number patterns</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Review exercise</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Challenge exercise</td>
<td>121</td>
</tr>
</tbody>
</table>

Chapter 4 Fractions – part 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>What is a fraction?</td>
<td>124</td>
</tr>
<tr>
<td>4B</td>
<td>Equivalent fractions and simplest form</td>
<td>132</td>
</tr>
<tr>
<td>4C</td>
<td>Mixed numerals and division by whole numbers</td>
<td>139</td>
</tr>
<tr>
<td>4D</td>
<td>Comparison of fractions</td>
<td>145</td>
</tr>
<tr>
<td>4E</td>
<td>Addition and subtraction of fractions</td>
<td>148</td>
</tr>
<tr>
<td>4F</td>
<td>Word problems involving addition and subtraction of fractions</td>
<td>155</td>
</tr>
<tr>
<td>4G</td>
<td>Subtraction of mixed numerals</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Review exercise</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Challenge exercise</td>
<td>164</td>
</tr>
</tbody>
</table>

Chapter 5 Fractions – part 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>The product of a whole number with a fraction</td>
<td>166</td>
</tr>
<tr>
<td>5B</td>
<td>Multiplying fractions</td>
<td>171</td>
</tr>
<tr>
<td>5C</td>
<td>Division of fractions</td>
<td>176</td>
</tr>
<tr>
<td>5D</td>
<td>Multiplying and dividing mixed numerals</td>
<td>182</td>
</tr>
<tr>
<td>5E</td>
<td>Word problems</td>
<td>185</td>
</tr>
<tr>
<td>5F</td>
<td>Order of operations with fractions</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Review exercise</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Challenge exercise</td>
<td>195</td>
</tr>
</tbody>
</table>
Chapter 6: An introduction to geometry

- **6A** Points, lines and planes
- **6B** Points and lines in a plane
- **6C** Points, lines and planes in space
- **6D** Intervals, rays and angles
- **6E** Measuring angles
- **6F** Angles at a point – geometric arguments
- **6G** Angles associated with transversals
- **6H** Further problems involving parallel lines
- **6I** Proving that two lines are parallel

Review exercise

Challenge exercise

Chapter 7: Algebra with fractions

- **7A** Division in algebra
- **7B** Multiplication and division in algebra
- **7C** Substitution
- **7D** Dividing and cancelling

Review exercise

Challenge exercise

Chapter 8: Decimals

- **8A** Place value and comparison of decimals
- **8B** Converting decimals to fractions and fractions to decimals
- **8C** Addition and subtraction of decimals
- **8D** Multiplication and division by powers of 10
- **8E** Multiplication of one decimal by another
- **8F** Division of decimals
- **8G** Recurring decimals
- **8H** Rounding of decimals

Review exercise

Challenge exercise
Chapter 9 **Measurement**
9A Units of measurement
9B Other units
9C The unitary method
9D Perimeter
9E Area
9F Areas by addition and subtraction
9G Areas of triangles and parallelograms
9H Volume of rectangular prisms
9I Time
9J Speed
Review exercise
Challenge exercise

Chapter 10 **Review and problem-solving**
10A Review
10B Problem-solving
10C Number bases
10D Binary numbers
10E Terminating decimals

Answers to exercises
ICE-EM Mathematics is a series of textbooks for students in years 5 to 10 throughout Australia who study the Australian Mathematics Curriculum.

Background

The International Centre of Excellence for Education in Mathematics (ICE-EM) was established in 2004 with the assistance of the Australian Government and is managed by the Australian Mathematical Sciences Institute (AMSI). The Centre originally published the series as part of a program to improve mathematics teaching and learning in Australia. AMSI is now collaborating with Cambridge University Press to publish Australian Curriculum editions of the series.

ICE-EM developed the program and textbooks in recognition of the importance of mathematics in modern society and the need to enhance the mathematical capabilities of Australian students. Students who use the series will have a strong foundation for work or further study.

Features

ICE-EM Mathematics provides a progressive development from upper primary to middle secondary school. The year 10 textbooks incorporate all material for the 10A course, and selected topics in earlier books carefully prepare students for this. ICE-EM Mathematics is an excellent preparation for all of the Australian Curriculum’s year 11 and 12 mathematics courses.

The writers of the series are some of Australia’s most outstanding mathematics teachers and subject experts. The textbooks are clearly and carefully written, and contain background information, examples and worked problems.

Each chapter addresses a specific Australian Curriculum content strand and set of sub-strands. The exercises within chapters take an integrated approach to the concept of proficiency strands, rather than separating them out. Students are encouraged to develop and apply understanding, fluency, problem-solving and reasoning skills in every exercise.

The series places a strong emphasis on understanding basic ideas, along with mastering essential technical skills. Mental arithmetic and other mental processes are major focuses, as is the development of spatial intuition, logical reasoning and understanding of the concepts.

Problem-solving lies at the heart of mathematics, so ICE-EM Mathematics gives students a variety of different types of problems to work on, which help them develop their reasoning skills. Challenge exercises at the end of each chapter contain problems and investigations of varying difficulty that should catch the imagination and interest of students. The final chapter in each 7–10 textbook contains additional problems that cover new concepts for students who wish to explore the subject even further.
The problems and examples in the *ICE-EM Mathematics* series are written in a way that deliberately does not require the use of a calculator, except in appropriate contexts, until year 9. During primary and early secondary years, students need to become confident with mental and written calculations, using a variety of techniques. These skills are essential to students’ mathematical development, and lead to a feeling of confidence and mathematical self-reliance. Furthermore, as different states have varying requirements and expectations of calculator use, the series is designed to be as calculator neutral as possible.

Additional resources

Cambridge HOTmaths provides an integrated program for users of the *ICE-EM Mathematics* series, combining the best of textbook and interactive online resources. The presence of a HOTmaths icon (shown at the right) in the header of a chapter topic shows that resources are available for that topic. Materials are accessible from a drop-down menu in HOTmaths, organised by textbook chapter and topic/lesson structure. For more information, see www.hotmaths.com.au.

The *ICE-EM Mathematics* website at www.cambridge.edu.au/go provides further support materials for teachers and students, as well as links to supplementary and enrichment materials. There are also teacher resources for the Foundation to Year 10 Australian Mathematics Curriculum available at www.amsi.org.au/teachermodules.

You can read more about AMSI at www.amsi.org.au, and also see the mathematics involved in a variety of careers at www.mathscareers.org.au.
We are grateful to Professor Peter Taylor, Director of the Australian Mathematics Trust, for his support and guidance as chairman of the Australian Mathematical Sciences Institute Education Advisory Committee.

We gratefully acknowledge the major contribution made by those schools that participated in the Pilot Program during the development of the *ICE-EM Mathematics* program.

We also gratefully acknowledge the assistance of:

Sue Avery
Robin Bailey
Brian Dorofaeff
Andy Edwards
Claire Ho
Nikolas Sakellaropoulos
James Wan

The author and publisher wish to thank the following sources for permission to reproduce material:

Every effort has been made to trace and acknowledge copyright. The publisher apologises for any accidental infringement and welcomes information that would redress this situation.
Author biographies

Peter Brown

Peter Brown studied Pure Mathematics and Ancient Greek at Newcastle University, and completed postgraduate degrees in each subject at the University of Sydney. He worked for nine years as a mathematics teacher in NSW State schools. Since 1990, he has taught Pure Mathematics at the School of Mathematics and Statistics at the University of New South Wales (UNSW). He was appointed Director of First Year Studies in 2011. He specialises in Number Theory and History of Mathematics and has published in both areas. Peter regularly speaks at teacher inservices, Talented Student days and Mathematics Olympiad Camps. In 2008 he received a UNSW Vice Chancellor’s Teaching Award for educational leadership.

Michael Evans

Michael Evans has a PhD in Mathematics from Monash University and a Diploma of Education from La Trobe University. He is currently employed at the Australian Mathematics Sciences Institute (AMSI). Before this, he was Head of Mathematics at Scotch College, Melbourne. He has also taught in public schools and he has been involved with curriculum development and assessment in Victoria for many years. In 1999, Michael was awarded an honorary Doctor of Laws by Monash University for his contribution to mathematics education, and in 2001 he received the Bernhard Neumann Award for contributions to mathematics enrichment in Australia.

Garth Gaudry

Garth Gaudry was Head of Mathematics at Flinders University before moving to UNSW, where he became Head of School. He was the inaugural Director of AMSI before becoming Director of AMSI’s International Centre of Excellence for Education in Mathematics. Previous positions include membership of the South Australian Mathematics Subject Committee and the Eltis Committee appointed by the NSW Government to enquire into Outcomes and Profiles. He is a life member of the Australian Mathematical Society and Emeritus Professor of Mathematics, UNSW.

David Hunt

David Hunt graduated from the University of Sydney in 1967 with an Honours degree in Mathematics and Physics, then obtained a master’s degree and a doctorate from the University of Warwick. He was appointed to a lectureship in Pure Mathematics at UNSW in early 1971, where he is currently an Associate Professor. David has taught courses in Pure Mathematics from first year to master’s level and was Director of First Year Studies in Mathematics for five years. Many of David’s activities outside UNSW have centred on the Australian Mathematics Trust. He is currently Deputy Chairman of the Australian Mathematics Olympiad Committee.
Janine McIntosh

Janine McIntosh works at the Australian Mathematical Sciences Institute where her role is to write mathematics materials and to work with teachers to develop their mathematics programs. Janine is an experienced primary teacher, curriculum writer and teacher educator.

Bill Pender

Bill Pender has a PhD in Pure Mathematics from Sydney University and a BA (Hons) in Early English from Macquarie University. After a year at Bonn University, he taught at Sydney Grammar School from 1975 to 2008, where he was Subject Master for many years. He has been involved in the development of NSW Mathematics syllabuses since the early 1990s, and was a foundation member of the Education Advisory Committee of AMSI. He has also lectured and tutored at Sydney University and at UNSW, and given various inservice courses. Bill is the lead author of the NSW calculus series *Cambridge Mathematics*.

Jacqui Ramagge

Jacqui Ramagge is currently Head of the School of Mathematics and Applied Statistics at the University of Wollongong (UOW) and is a member of the Engineering, Mathematics and Informatics panel of the Australian Research Council College of Experts. After graduating in 1993 with a PhD in Mathematics from the University of Warwick (UK), she worked at the University of Newcastle (Australia) until 2007, when she moved to UOW. She teaches mathematics at all university levels, is part of the CSIRO Mathematicians in Schools program, and has won a teaching award. She contributed to the Vermont Mathematics Initiative (USA) and is a founding member of the Australian Mathematics Trust Primary Problems Committee.
This textbook is supported by online resources...

Cambridge GO
YOUR GATEWAY ONLINE
Digital resources and support material for schools.

About the free online resources...
Free additional student support resources are available online at Cambridge GO and include:

- the PDF Textbook – a downloadable version of the student text, with note-taking and bookmarking enabled
- extra material and activities
- links to other resources.

Available free for users of this textbook. Use the unique access code found in the front of this textbook to activate these resources.

www.cambridge.edu.au/GO
Access your online resources today at www.cambridge.edu.au/GO

1. **Log in** to your existing Cambridge GO user account
 OR
 Create a new user account by visiting: www.cambridge.edu.au/GO/newuser
 - All of your Cambridge GO resources can be accessed through this account.
 - You can log in to your Cambridge GO account anywhere you can access the internet using the email address and password with which you’re registered.

2. **Activate** Cambridge GO resources by entering the unique access code found in the front of this textbook.
 - Once you have activated your unique code on Cambridge GO, it is not necessary to input your code again. Just log in to your account using the email address and password you registered with and you will find all of your resources.

3. **Go** to the My Resources page on Cambridge GO and access all of your resources anywhere, anytime.*

* Technical specifications: You must be connected to the internet to activate your account and to use the Interactive Textbook. Some material, including the PDF Textbook, can be downloaded. To use the PDF Textbook you must the latest version of Adobe Reader installed.

For more information or help contact us on 03 8671 1400 or enquiries@cambridge.edu.au