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1 Special relativity

The essence of a physical theory expressed in mathematical form is the identification

of mathematical concepts with certain physically measurable quantities. This must be

our first concern . . .

Bernard Schutz, §7.1

Minkowski pointed out that it is very helpful to regard (t , x, y, z) as simply four

coordinates in a four-dimensional space [that] we now call spacetime. This was the

beginning of the geometrical point of view, which led directly to general relativity in

1914–16.

Bernard Schutz, §1.1

1.1 Exercises

1.1 Convert the following to [natural] units in which c = 1, expressing everything in

terms of m and kg:

(a) Worked example: 10 J.

Solution:

10 J = 10 N m = 10 kg m2s−2 =
10 kg m2s−2

(3 × 108 m s−1)2
= 1.11 × 10−16 kg.

(c) Planck’s reduced constant, h̄ = 1.05 × 10−34 J s. (Note the definition of h̄ in

terms of Planck’s constant h: h̄ ≡ h/2π .)

Solution:

h̄ = 1.05 × 10−34J s =
1.05 × 10−34 kg m2s−1

3 × 108 m s−1
= 3.52 × 10−43kg m.

(e) Momentum of a car.
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2 Special relativity

Solution:

p =
30 ms−1

3 × 108 ms−1
× 1000 kg = 10−4 kg.

(g) Water density, 103 kg m−3.

Solution:

103 kg m−3.

We will learn in Chapter 8 how to express mass in terms of meters, see in particular

eqn. (8.8).

1.2 Convert from natural units (c = 1) to SI units

(a) Velocity, v = 10−2:

Solution:

v = 10−2 × c[m s−1] = 3 × 106 [m s−1].

(c) Time, 1018 [m]:

Solution:

1018 [m]
c[m s−1]

= 3.3 × 109 [s].

(e) Acceleration, 10 [m−1]:

Solution:

10 [m−1] × c2[m2 s−2] = 9 × 1017 [m s−2].

1.3 Draw the t and x axes of the spacetime coordinates of an observer O and then draw:

(c) The t̄ and x̄ axes of an observer Ō who moves with velocity v = 0.5 in the

positive x-direction relative to O and whose origin (t̄ = x̄ = 0) coincides with

that of O.
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3 Exercises
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Figure 1.1 The x̄ and t̄ axes are the solution to Exercise 1.3(c). The dotted line is the invariant hyperbola with�s2 = −4.

The solution to 1.3(h) is the horizontal line. The solution to 1.3(i) is the sloping line, parallel to the x̄-axis. It is

tangent to the invariant hyperbola at the t̄ -axis. These plots were made using the Mapletm worksheet that

accompanies this book.

Solution: Recall from Schutz §1.5 that the t̄-axis follows from simple kinematics; it

is just the line t = x/v, so here t = 2x. Recall also from §1.5 (see Schutz Fig. 1.5)

that the x̄-axis was a straight line with slope equal to the inverse of that of the t̄-axis,

x = t/v. (In SP1.3 you will prove this.) Here t = x/2. The solution was plotted in

fig. 1.1.

(h) The locus of events, all of which occur at the time t = 2 m (simultaneous as seen

by O).

Solution: See fig. 1.1.

(i) The locus of events, all of which occur at the time t̄ = 2 m (simultaneous as seen

by O).

Solution: The locus of events, all of which occur at the time t̄ = 2 m, have arbitrary

x̄, and so the solution is a straight line parallel to the x̄-axis. The coordinates in the
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4 Special relativity

O frame are easily found with the Lorentz transformation. (See SP1.13 for a different

approach.) From Schutz Eq. (1.12) we have

t̄ = 2 =
t − vx

√
1 − v2

⇒ t = vx + 2
√

1 − v2 = x/2 +
√

3.

The solution was plotted in fig. 1.1.

1.5 (c) A second observer O moves with speed v = 0.75 in the negative x-direction

relative to O. Draw the spacetime diagram of O and in it depict the experiment

performed by O. Does O conclude that the particle detectors sent out their signals

simultaneously? If not, which signal was sent first?

Hint: See Schutz Fig. 1.5(b) for how the time and space axes look for a reference frame

moving in the negative x-direction. Think carefully about what the t̄ and x̄ mean.

(d) Compute the interval �s2 between the events at which the detectors emitted their

signals, using both the coordinates of O and those of O.

Hint: Use the Lorentz transformation for a velocity boost to obtain the coordinates of

the events in O.

1.6 Show that the interval

�s2 =
3

∑

α=0

3
∑

β=0

Mαβ(�xα)(�xβ), Schutz Eq. (1.2) (1.1)

contains only Mαβ +Mβα when α � β, not Mαβ and Mβα independently. Argue that

this allows us to set Mαβ = Mβα without loss of generality.

Solution: Pick a pair of indices, α = α∗ and β = β∗ say, with α∗ � β∗, and where

α∗ and β∗ are fixed integers in the set {0, 1, 2, 3}. So �s2 contains a term like,

Mα∗β∗(�xα∗)(�xβ∗).

But �s2 also contains a term like,

Mβ∗α∗(�xβ∗)(�xα∗) = Mβ∗α∗(�xα∗)(�xβ∗).
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5 Exercises

The equality follows because of course the product does not depend upon the order

of the factors. So we can group these two terms and factor out the (�xα∗)(�xβ∗)
leaving,

(�xα∗)(�xβ∗)(Mα∗β∗ + Mβ∗α∗).

Because the off-diagonal terms always appear in pairs as above, we could without

changing the interval (and therefore without loss of generality) replace them with

their mean value

M̃αβ ≡ (Mαβ + Mβα)/2.

Thus the new tensor M̃αβ is by construction symmetric. The RHS of eqn. (1.1) is

called a quadratic form, and thus the interval of SR can be written as a symmetric

quadratic form.

1.8 (a) Derive,

�s2 = M00(�r)2 + 2M0i�xi�r + Mij�xi�xj , Schutz Eq. (1.3) (1.2)

where �r =
√

(�x)2 + (�y)2 + (�z)2, from eqn. (1.1) for general Mαβ . [You

can assume �s2 = 0 and �t > 0.]

Solution: Start with eqn. (1.1), and partially expand the summations

�s2 = M00(�t)2 +
3

∑

i=1

M0i�t�xi +
3

∑

i=1

Mi0�xi�t +
3

∑

i=1

3
∑

j=1

Mij�xi�xj

= M00(�t)2 + 2

3
∑

i=1

M0i�t�xi +
3

∑

i=1

3
∑

j=1

Mij�xi�xj . used Mi0 = M0i

Consider the case �s2 = 0, so from Schutz Eq. (1.1), �t = ±�r =
±

√

(�x)2 + (�y)2 + (�z)2. Then, when �t > 0,

�s2 = M00(�r)2 + 2�r

3
∑

i=1

M0i�xi +
3

∑

i=1

3
∑

j=1

Mij�xi�xj ,

which is eqn. (1.2).

(b) Since �s2 = 0 in eqn. (1.2) for any {�xi}, replace �xi by −�xi in eqn. (1.2)

and subtract the resulting equations from eqn. (1.2) to establish that M0i = 0 for

i = 1, 2, 3.
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6 Special relativity

Solution: Let us first recall why �s2 = 0 in eqn. (1.2) for any {�xi}. We have set

�s2 = 0 (because we were considering the path of a light ray) and it followed, based

upon the universality of the speed of light, that we required also �s2 = 0. Now why

does �s2 = 0 for any �xi? Because we have imposed that we are considering the

path of a light ray, and regardless of the spatial point xi on the light ray path we

choose, it always has (�t)2 = (�r)2, so �s2 = −(�t)2 + (�r)2 = 0.

Now note that changing �xi to −�xi does not change

�r =
√

(�x)2 + (�y)2 + (�z)2.

Thus the only term in eqn. (1.2) to change sign when changing �xi to −�xi is the

middle term, the sum over 2M0i�xi�r . The final term does not because changing

�xi to −�xi also changes �xj to −�xj ; the i and j are just dummy indices. So

when we subtract �s̄2(�t , �xi)−�s̄2(�t , −�xi) as instructed, using eqn. (1.2), we

find:

0 = 0 − 0 = �s̄2(�t , �xi) − �s̄2(�t , −�xi)

= M00(�r)2 + 2�r

3
∑

i=1

M0i�xi +
3

∑

i=1

3
∑

j=1

Mij�xi�xj

−
(

M00(�r)2 + 2�r

3
∑

i=1

M0i(−�xi) +
3

∑

i=1

3
∑

j=1

Mij (−�xi)(−�xj )
)

= 4�r

3
∑

i=1

M0i�xi . (1.3)

This must be true for arbitrary �xi so M0i = 0.

(c) Derive

Mij = −M00δij , (i, j = 1, 2, 3) Schutz Eq. (1.4b) (1.4)

using eqn. (1.2) with �s̄2 = 0. Hint: �x, �y, and �z are arbitrary.

Solution: Recall from Exercise 1.8(b) that adding to eqn. (1.2) the following

0 = �s2 = M00(�r)2 − 2�r

3
∑

i=1

M0i�xi +
3

∑

i=1

3
∑

j=1

Mij�xi�xj

gives

0 = M00(�r)2 +
3

∑

i=1

3
∑

j=1

Mij�xi�xj . (1.5)
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7 Exercises

Suppose, �x = �r , �y = �z = 0. Substituting into eqn. (1.5) then gives M00 =
−M11. Or, when �y = �r , �x = �z = 0, we see that M00 = −M22. Similarly,

M00 = −M33. To see that the off-diagonal terms are zero, note that it is also possible

that �x = �y = �r/
√

2 and �z = 0. Substitution into eqn. (1.5) gives that

0 = (M12 + M21)(�r)2/2 + M11(�r)2/2 + M22(�r)2/2 + (�r)2M00

= (M12 + M21)(�r)2/2 − M00(�r)2/2 − M00(�r)2/2 + (�r)2M00

= (M12 + M21)(�r)2/2 = M21(�r)2. (1.6)

The final step used Mαβ = Mβα , as proved in Exercise 1.6. And since (�r)2 was

arbitrary, we have M21 = 0 = M12. Similarly, M13 = M31 = 0 = M23 = M32. In

summary,

Mij = −M00δij , (i, j = 1, 2, 3),

which is eqn. (1.4).

1.9 Explain why the line PQ in Schutz Fig. 1.7 is drawn in the manner described in the

text. [Note that in Schutz Fig. 1.7 the F should be a Q to be consistent with the text

and with the corresponding figure in the first edition (Schutz, 1985, Fig. 1.7).]

Solution: The line PQ is described in the paragraph after Schutz Eq. (1.5) as

perpendicular to the y-axis, parallel to the t–x plane, and parallel to the t̄-axis in

Schutz Fig. 1.5(a). The line PQ represents the path of a clock that is stationary in the

O frame. Because the O frame moves in the x-direction its path must be orthogonal

to the y-axis. And furthermore it must be parallel to the t–x plane, as argued for

a clock at the origin of the O frame in Schutz §1.5. In fact the clock is simply

displaced a fixed distance from y = 0 along the y- or ȳ-axis and moves parallel to the

t-axis.

1.11 Show that the hyperbolae −t2 + x2 = a2 and −t2 + x2 = −b2 are asymptotic to the

lines t = ±x, regardless of a and b.

Hint: Regardless of how large a and b are, consider the approximate behavior when

|x| and |t | are much greater than |a| and |b|.

1.12 (a) Use the fact that the tangent to the hyperbola DB in Schutz Fig. 1.14 is the line

of simultaneity for O to show that the time interval AE is shorter than the time

recorded on O’s clock as it moved from A to B.
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8 Special relativity

Figure 1.2 Similar to Schutz Fig. 1.14. The dotted line is the path of a second clock at rest inO needed to infer that the moving

clock along the t -axis runs slowly.

Solution: This example shows that time dilation is self-consistent. From the perspec-

tive of an observer in O, the time interval AE = �τ corresponds to the proper time

of a moving clock, whose world line in Schutz Fig. 1.14 is the t-axis, see fig. 1.2.

An observer at rest in O needs two clocks to record the time interval �t̄ = t̄E − t̄A

corresponding to the proper time interval �τ . The clock moving from A to B is one of

those two clocks, recording t̄A. The other is drawn as a dotted line (fig. 1.2) that passes

through E , recording t̄E . The fact that the line of simultaneity in O passes through B

and E means that t̄E = t̄B, and hence �t̄ = t̄B − t̄A. Recall the time dilation formula,

�τ = �t
√

1 − v2. Schutz Eq. (1.10) (1.7)

where �t was the so-called improper time, an interval measured by two clocks. Here

�t̄ plays the role of �t (improper time measured by two clocks):

�τ = �t̄
√

1 − v2, (1.8)

implying �τ < �t̄ for |v| > 0.

Don’t be thrown off by the �t in eqn. (1.7) not having a bar above it, while it does

in eqn. (1.8) above. It is not the symbol that is important but the role played by the

thing it depicts. The roles of the O and O frame have been reversed in this exercise,

which was the point of discussion around Schutz Fig. 1.14.
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9 Exercises

1.12 (b) Calculate that1

(�s2)AE = (1 − v2) (�s2)AB. (1.9)

Solution: Start with the LHS of eqn. (1.9):

(�s2)AE ≡ −(tE − tA)2 + (xE − xA)2 definition of the interval

= −t2
E

+ x2
E

A is the origin

= −t2
E

. E on t-axis (1.10)

From fig. 1.2 herein it is clear that

tE = tB − xBv dashed line parallel to x̄-axis, slope is v

= tB − (tBv)v

= tB(1 − v2). (1.11)

Now consider the RHS of eqn. (1.9),

(�s2)AB = −t2
B

+ x2
B

= −t2
B

+ (vtB)2 = −t2
B
(1 − v2). (1.12)

Combining eqns. (1.10, 1.11, 1.12) one finds,

(�s2)AE = −t2
B
(1 − v2)2 = (1 − v2) (�s2)AB. (1.13)

1.12 (c) Use (b) to show that O regards O’s clocks to be running slowly, at just the right

rate.

Solution: This corresponds to verfying eqn. (1.8) above; recall �τ = tE and �t̄ = t̄B.

To find t̄B use the fact that the interval is invariant between Lorentz frames,

(�s2)AB = −t2
B

+ x2
B

= −t̄2
B

+ x̄2
B

= −t̄2
B

. B on t̄-axis (1.14)

Combining eqns. (1.10, 1.13, 1.14)

−t2
E

= (�s2)AE = (1 − v2) (�s2)AB = −(1 − v2) t̄2
B

tE = t̄B

√

1 − v2. took square root (1.15)

1.13 The half-life of the elementary particle called the pi meson (or pion) is 2.5 × 10−8 s

when the pion is at rest relative to the observer measuring its decay time. Show, by

1 We had corrected a typo in the original question, replacing AC with AE . SP1.15 explores the other possible

interpretation.
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10 Special relativity

the principle of relativity, that pions moving at speed v = 0.999 must have a half-life

of 5.6 × 10−7 s, as measured by an observer at rest.

Hint: Study the solution to Exercise 1.12, and make the analogy with the situation

here. Think of the pion as a clock of sorts; its birth is say at time zero and its decay

is another tick of the clock. In making the analogy with Exercise 1.12, pay attention

to which time intervals are measured by one clock (proper time intervals) and which

involve two physically separated clocks.

1.14 Suppose that the velocity v of O relative to O is small, v = |v| ≪ 1. Show

that the time dilation, Lorentz contraction, and velocity-addition formulae can be

approximated by, respectively:

(a) �t ≈
(

1 +
1

2
v2

)

�t̄ , (1.16)

(b) �x ≈
(

1 −
1

2
v2

)

�x̄, (1.17)

(c) w′ ≈ w + v − wv(w + v), (with |w| ≪ 1 as well). (1.18)

What are the relative errors in these approximations when v = w = 0.1.

(a) Solution: Recall the time dilation formula was given in eqn. (1.7), with here

�τ = �t̄ . Solving for �t , and expanding the RHS in a Taylor series in the

small parameter v we obtain

�t = �t̄
1

√
1 − v2

= �t̄ (1 − v2)−1/2

= �t̄

(

1 +
1

2
v2 +

3

8
v4 + · · ·

)

used eqn. (B.2)

≃ �t̄

(

1 +
1

2
v2

)

. (1.19)

For the Taylor series we have used the binomial series, eqn. (B.2) of Appendix

B, a result well worth remembering! The largest term we ignored was 3
8
v4. You

will often see this written as O(v4), read “of order v to the fourth.” This means

that we are focusing attention on the important part, i.e. v4, and ignoring the

irrelevant numerical factor 3/8 that is close to unity. The higher order terms

in the series were O(v6) and these are clearly much smaller since v ≪ 1. The

relative error is then

3
8
v4

(1 − v2)−1/2
≈

3

8
v4 = 3.75 × 10−5.

In fact the relative error can be calculated exactly to be 3.76 × 10−5, see

accompanying MapleTM worksheet.
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