

Cambridge University Press 978-1-107-63845-7 — Cambridge International AS and A Level Chemistry Lawrie Ryan and Roger Norris Frontmatter More information

Lawrie Ryan and Roger Norris

Cambridge International AS and A Level

Chemistry

Coursebook

Second Edition

Cambridge University Press 978-1-107-63845-7 – Cambridge International AS and A Level Chemistry Lawrie Ryan and Roger Norris Frontmatter More information

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org

© Cambridge University Press 2011, 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011 Second edition 2014

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-63845-7 Paperback with CD-ROM for Windows® and Mac®

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

NOTICE TO TEACHERS IN THE UK

It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following circumstances:

- (i) where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;
- (ii) where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of Cambridge University Press;
- (iii) where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for example, the reproduction of short passages within certain types of educational anthology and reproduction for the purposes of setting examination questions.

Example answers and all other end-of-chapter questions were written by the authors.

Cambridge University Press 978-1-107-63845-7 – Cambridge International AS and A Level Chemistry Lawrie Ryan and Roger Norris Frontmatter <u>More information</u>

Contents

How to use this book	vi	Chapter 6
Chapter 1: Moles and equations	1	What
Masses of atoms and molecules	2	Stand Measi
Accurate relative atomic masses	3	Hess's
Amount of substance	5	Entha
Mole calculations	6	cha
Chemical formulae and chemical equations	10	Entha
Solutions and concentration	14	cha
Calculations involving gas volumes	18	Calcu
Charten 2. Atomic atoms	24	anl
Chapter 2: Atomic structure	24	Bond
Elements and atoms	25	Calcu
Inside the atom	25	bo
Numbers of nucleons	28	Chapter 7
Isotopes	28	-
How many protons, neutrons and electrons?	29	What
Chapter 3: Flectrons in atoms	32	Oxida
•		Redo
•		Namii
		From
		Balan
		nui
	10	
Periodic Table	41	Chapter 8
Chapter 4: Chemical bonding	48	Rever Chang
Types of chemical bonding	49	Equili
Ionic bonding	49	cor
Covalent bonding	51	Equili
Shapes of molecules	55	cor
More molecular shapes	56	Equili
Metallic bonding	58	Acid-l
		Chanter 9
		-
Bonding and physical properties	66	React
Chanter 5: States of matter	72	The e
•		The e
		Cataly
9		Enzyn
•		Chapter 1
	10	
	20	Ctruct
Simple molecular lattices Carbon nanoparticles	80 82	Struct Period
Chapter 4: Chemical bonding Types of chemical bonding Ionic bonding Covalent bonding Shapes of molecules More molecular shapes	49 49 51 55 56	Ree Na Frce Ba

Chapter 6: Enthalpy changes	89
What are enthalpy changes?	90
Standard enthalpy changes	92
Measuring enthalpy changes	94
Hess's law	97
Enthalpy change of reaction from enthalpy	
changes of formation	97
Enthalpy change of formation from enthalpy	
changes of combustion	98
Calculating the enthalpy change of hydration of anhydrous salt	an 99
Bond energies and enthalpy changes	99
Calculating enthalpy changes using	33
bond energies	101
Chapter 7: Redox reactions	106
What is a redox reaction?	107
Redox and electron transfer	108
Oxidation numbers	109
Redox and oxidation number	110
Naming compounds	111
From name to formula	112
Balancing chemical equations using oxidation	
numbers	112
Chapter 8: Equilibrium	116
Reversible reactions and equilibrium	117
Changing the position of equilibrium	119
Equilibrium expressions and the equilibrium	
constant, K _c	123
Equilibria in gas reactions: the equilibrium	
constant, K _p	127
Equilibria and the chemical industry	129
Acid-base equilibria	130
Chapter 9: Rates of reaction	140
Reaction kinetics	141
The effect of concentration on rate of reaction	143
The effect of temperature on rate of reaction	143
Catalysis	144
Enzymes	145
Chapter 10: Periodicity	148
Structure of the Periodic Table	149
Periodicity of physical properties	149
Periodicity of chemical properties	154

Cambridge University Press 978-1-107-63845-7 – Cambridge International AS and A Level Chemistry Lawrie Ryan and Roger Norris Frontmatter <u>More information</u>

Oxides of Period 3 elements Chlorides of Period 3 elements	156 158
Chapter 11: Group 2	163
Physical properties of Group 2 elements Reactions of Group 2 elements Thermal decomposition of Group 2 carbonate	164 165 s
and nitrates Some uses of Group 2 compounds	168 169
Chapter 12: Group 17	171
Physical properties of Group 17 elements Reactions of Group 17 elements Reactions of the halide ions Disproportionation Uses of the halogens and their compounds	172 173 175 177 178
Chapter 13: Nitrogen and sulfur	180
Nitrogen gas Ammonia and ammonium compounds Uses of ammonia and ammonium compounds Sulfur and its oxides Sulfuric acid	181 182 183 185 185
Chapter 14: Introduction to organic chemistry	188
Representing organic molecules Functional groups Naming organic compounds Bonding in organic molecules Structural isomerism Stereoisomerism Organic reactions – mechanisms Types of organic reaction	189 192 192 193 194 195 196
Chapter 15: Hydrocarbons	201
The homologous group of alkanes Sources of the alkanes Reactions of alkanes The alkenes Addition reactions of the alkenes Oxidation of the alkenes Addition polymerisation Tackling questions on addition polymers	202 202 204 207 208 210 211 213
Chapter 16: Halogenoalkanes	217
Nucleophilic substitution reactions	218

Chapter 17: Alcohols, esters and carboxylic acids	225
The homologous series of alcohols	226
Reactions of the alcohols	226
Carboxylic acids	231
Chapter 18: Carbonyl compounds	234
The homologous series of aldehydes and	
ketones	235
Preparation of aldehydes and ketones Reduction of aldehydes and ketones	236 237
Nucleophilic addition with HCN	237
Testing for aldehydes and ketones	238
Reactions to form tri-iodomethane	240
Infra-red spectroscopy	241
Chapter P1: Practical skills 1	246
Review of practical knowledge and	
understanding	247
Manipulation, measurement and observation	249
Presentation of data and observations	250
Analysis, conclusions and evaluation	251
Chapter 19: Lattice energy	257
Defining lattice energy	258
Enthalpy change of atomisation and	
electron affinity	258
Born-Haber cycles	259 262
Factors affecting the value of lattice energy Ion polarisation	262
Enthalpy changes in solution	265
Chapter 20: Electrochemistry	273
Redox reactions revisited	274
Electrolysis	275
Quantitative electrolysis	276
Electrode potentials	278
Measuring standard electrode potentials	282
Using <i>E</i> ⁰ values	284
Cells and batteries	293
More about electrolysis	295
Chapter 21: Further aspects of equilibria	303
The ionic product of water, $K_{\rm w}$	304
pH calculations	305
Weak acids – using the acid dissociation	
constant, K _a	307
Indicators and acid-base titrations Buffer solutions	309 313
Build Solutions	213

Elimination reactions

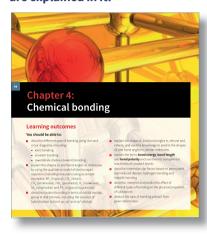
Uses of halogenoalkanes

222

222

Cambridge University Press 978-1-107-63845-7 – Cambridge International AS and A Level Chemistry Lawrie Ryan and Roger Norris Frontmatter More information

	quilibrium and solubility Partition coefficients	316 319
Chapt	ter 22: Reaction kinetics	324
F R W C D	Factors affecting reaction rate Rate of reaction Rate equations Which order of reaction? Calculations involving the rate constant, k Deducing order of reaction from raw data Kinetics and reaction mechanisms Catalysis	325 325 330 332 334 335 338 340
Chapt	ter 23: Entropy and Gibbs free energy	349
C C E E	ntroducing entropy Chance and spontaneous change Calculating entropy changes Entropy and temperature Entropy, enthalpy changes and free energy Gibbs free energy Gibbs free energy calculations	350 350 354 357 357 358 360
Chapt	ter 24: Transition elements	366
P R	What is a transition element? Physical properties of the transition elements Redox reactions Igands and complex formation	367 369 369 371
Chapt	ter 25: Benzene and its compounds	381
R P	The benzene ring Reactions of arenes Phenol Reactions of phenol	382 384 387 388
Chapt	ter 26: Carboxylic acids and their derivatives	393
C	The acidity of carboxylic acids Oxidation of two carboxylic acids Oxidation of two carboxylic acids	394 395 396
Chapt	ter 27: Organic nitrogen compounds	400
F A P R	amines formation of amines amino acids Peptides Reactions of the amides Relectrophoresis	401 402 404 405 406 407


Chapter 28: Polymerisation	411
Condensation polymerisation	412
Synthetic polyamides	413
Biochemical polymers	414
The importance of hydrogen bonding in DNA	418
Polyesters	421
Designing useful polymers	422
Degradable polymers Polymer deductions	425 426
Folymer deductions	420
Chapter 29: Analytical chemistry	433
Chromatography	434
Proton (¹ H) nuclear magnetic resonance	439
Carbon-13 NMR spectroscopy	444
Mass spectrometry	446
Chapter 30: Organic synthesis	456
Designing new medicinal drugs	457
Chapter P2: Practical skills 2	464
Written examination of practical skills	465
Planning	465
Analysis, conclusions and evaluation	468
Appendix 1: The Periodic Table of the	
Elements	473
Appendix 2: Selected standard electrode	
potentials	474
Appendix 3: Qualitative analysis notes	475
Glossary	477
Index	486
Acknowledgements	493
Terms and conditions of use for the CD-ROM	494

Cambridge University Press 978-1-107-63845-7 - Cambridge International AS and A Level Chemistry Lawrie Ryan and Roger Norris Frontmatter

More information

How to use this book

Each chapter begins with a short list of the facts and concepts that are explained in it.

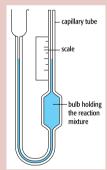
There is a short context at the beginning of each chapter, containing an example of how the material covered in the chapter relates to the 'real world'.

Introduction

In the last chapter we looked at the types of forces that keep the particles in solids and liquids together and make it possible to liquefy gases. In this chapter, we

This book does not contain detailed instructions for doing particular experiments, but you will find background information about the practical work you need to do in these boxes. There are also two chapters, P1 and P2, which provide detailed information about the practical skills you need to develop during the course.

Important equations and other facts are shown in highlight boxes.


Questions throughout the text give you a chance to check that you have understood the topic you have just read about. You can find the answers to these questions on the CD-ROM.

The text and illustrations describe and explain all of the facts and concepts that you need to know. The chapters. and often the content within them as well, are arranged in the same sequence as in your syllabus.

The progress of some reactions can be followed by measuring small changes in the volume of the reaction mixture. For example, during the hydration of methylpropene, the volume decreases.

$$(CH_3)_2C = CH_2 + H_2O \xrightarrow{H^+} (CH_3)_3COH$$

An instrument called a dilatometer (Figure 22.4) is used to measure the small changes in volume. The temperature has to be controlled to an accuracy of ±0.001 °C. Can you think why?

- 2 a Suggest a suitable method for following the progress of each of these reactions:
 - i H₂O₂(aq) + 2I⁻(aq) + 2H⁺(aq)
 - ii HCOOCH₃(aq) + H₂O(l)
 - → HCOOH(aq) + CH₃OH(aq)
 - $\textbf{iii} \quad 2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$
 - iv BrO₃⁻(aq) + 5Br⁻(aq) + 6H⁺(aq) \longrightarrow 3Br₂(aq) + 3H₂O(l)
 - **b** Why is it essential that the temperature is
 - kept constant when measuring the progress of a reaction?

Calculating rate of reaction graphically

Rate of reaction usually changes as the reaction proceeds. This is because the concentration of reactants is decreasing. Taking the isomerisation of cyclopropane to propene as an example:

The progress of this reaction can be followed by measuring the decrease in concentration of cyclopropane or increase

in concentration of propene. Table 22.1 shows these changes at 500 °C. The measurements were all made at the same temperature because reaction rate is affected markedly by temperature.

	Time/min	[cyclopropane]/ moldm ⁻³	[propene]/ moldm ⁻³
	0	1.50	0.00
	5	1.23	0.27
	10	1.00	0.50
	15	0.82	0.68
	20	0.67	0.83
	25	0.55	0.95
	30	0.45	1.05
	35	0.37	1.13
	40	0.33	1.17

 Table 22.1 Concentrations of reactant (cyclopropane)
 and product (propene) at 5-minute intervals (temperature = 500 °C (773 K)).

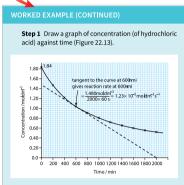

Note that we put square brackets, [], around the cyclopropane and propene to indicate concentration; [propene] means 'concentration of propene'.

Figure 22.5 shows how the concentration of propene changes with time.

Cambridge University Press 978-1-107-63845-7 - Cambridge International AS and A Level Chemistry Lawrie Ryan and Roger Norris Frontmatter More information

How to use this book

Wherever you need to know how to use a formula to carry out a calculation, there are worked example boses to show you how to do this.

Figure 22.13 The concentration of hydrochloric acid and methanol fall at the same rate as time passes.

 $\label{eq:starton} \textbf{Step 2} \ \ \text{Draw tangents to the curve at various places} \\ corresponding to a range of concentrations. In \\ \textit{Figure 22.13 the tangent drawn corresponds to} \\ [\text{HCI}] = 1.04 \\ \text{mol dm}^{-3}.$

Step 3 For each tangent drawn, calculate the gradient and then the rate of reaction. **In** Figure 22.13, the rate corresponding to [HCl] = 1.04 mol dm⁻³ is

 $\frac{1.480}{2000 \times 60} = 1.23 \times 10^{-5} \,\text{mol dm}^{-3} \,\text{s}^{-1}$

(multiply by 60 to convert minutes to seconds) Table 22.7 shows the rates corresponding to five different concentrations of hydrochloric acid

Time/ min	Concen- tration/ moldm ⁻³	Rate from graph/ moldm ⁻³ min ⁻¹	Rate from graph/ mol dm ⁻³ s ⁻¹
0	1.84	2.30 × 10 ⁻³	3.83 × 10 ⁻⁵
200	1.45	1.46 × 10 ⁻³	2.43×10 ^{−5}
400	1.22	1.05 × 10 ⁻³	1.75 × 10 ^{−5}
600	1.04	0.74 × 10 ⁻³	1.23 × 10 ⁻⁵
800	0.91	0.54×10^{-3}	0.90 × 10 ⁻⁵

the [CH₂OH] because if you look at the data in Table 22.6, you will see that the concentration of CH₃OH is decreasing at the same rate as the decrease in concentration of HCl.

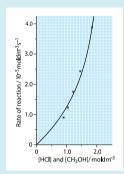


Figure 22.14 A graph showing how concentration changes of hydrochloric acid or methanol affect rate of reaction. The curve shows that the reaction is likely

Figure 22.14 shows an upward curve. This indicates that the reaction is second order. But second order with respect to what? As the concentrations of both HCl and CH₃OH are decreasing at the same rate, either of these may be second order. The possibilities are:

- $rate = k[CH_3OH][HCI]$
- rate = $k[CH_2OH]^2$
- rate = $k[HCl]^2$

Further experiments would have to be carried out to confirm one or other of these possibilities. The only thing we can be sure of is that the reaction is second order overall.

Definitions that are required by the syllabus are shown in highlight boxes.

Oxidation Is Loss of electrons Reduction Is Gain of electrons The initial letters shown in bold spell **OIL RIG**. This may help you to remember these two definitions!

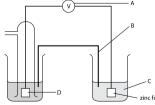
Key words are highlighted in the text when they are first introduced.

hydrolyse a protein and try to identify the amino acid residues present. This is when two-way chromatography is useful. In this technique, paper chromatography is carried out as normal but then the chromatogram produced is rotated by 90° and re-run in a different solvent. It is unlikely that the R. values will coincide in two different solvents, so separation takes place (Figure 29.4).

You will also find definitions of these words in the Glossary.

 $two\hbox{-}way\ chromatography\ \ a\ technique\ used\ in\ paper$ or thin-layer chromatography in which one spot of a mixture is placed at the corner of a square sheet and is developed in the first solvent as usual. The sheet is then turned through 90° and developed in the second solvent, giving a better separation of components having similar R_{ϵ} values.

There is a summary of key points at the end of each chapter. You might find this helpful when you are revising.


Summary

- Each of the transition elements forms at least one ion with a partially filled d orbital. They are metals with similar physical and chemical properties.
- When a transition element is oxidised, it loses electrons from the 4s subshell first and then the 3d subshell to form a positively charged ion.
- Transition elements can exist in several oxidation
- Some transition element complexes exist as geometrical (cis-trans) isomers, e.g. cis- and transplatin; others, especially those associated with bidentate ligands with co-ordination number 6, may exist as optical isomers.
- cis-platin can be used as an anti-cancer drug by binding to DNA in cancer cells and preventi cell division.

Questions at the end of each chapter are more demanding exam-style questions, some of which may require use of knowledge from previous chapters. Answers to these questions can be found on the CD-ROM.

End-of-chapter questions

1 The diagram shows an electrochemical cell designed to find the standard electrode potential for zinc.

- Name the apparatus labelled A and give a characteristic it should have.
- Name part B and give its two functions.
- Describe how part B can be prepared.
- What is C?
- Name part **D** and give its two functions.
- Give the three standard conditions for the measurement of a standard electrode potential.
- [2] [3] [2] [2] [3]

[3] Total = 15