Essential Equations for Anaesthesia

Key Clinical Concepts for the FRCA and EDA

Authors

Dr Edward T. Gilbert-Kawai MBChB
Anaesthetic Registrar, Central London School of Anaesthesia, UK

Dr Marc D. Wittenberg MBChB, BSc (Hons), FRCA
Senior Anaesthetic Registrar, Central London School of Anaesthesia, UK

Foreword and contents editor

Dr Wynne Davies MBBCh, DRCOG, DCH, FRCA, FFICM
University College London Hospitals NHS Foundation Trust, UK

Statistical editor

Dr Rebecca Gilbert PhD
School of Social and Community Medicine, University of Bristol, UK
Essential equations for anaesthesia: key clinical concepts for the FRCA and EDA
Authors Dr Edward T. Gilbert-Kawai and Dr Marc D. Wittenberg
Frontmatter

Cambridge University Press
978-1-107-63660-6 - Essential Equations for Anaesthesia: Key Clinical Concepts for the FRCA and EDA
Authors Dr Edward T. Gilbert-Kawai and Dr Marc D. Wittenberg
Frontmatter
More information

CAMBRIDGE
UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.
It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107636606

© Edward T. Gilbert-Kawai and Marc D. Wittenberg

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Gilbert-Kawai, Edward T.
Essential equations for anaesthesia : key clinical concepts for the FRCA and EDA / authors, Dr. Edward T. Gilbert-Kawai, MBChB, Central London School of Anaesthesia, UK, Dr. Marc D. Wittenberg, MBChB, BSc (Hons), FRCA, Central London School of Anaesthesia, UK ; foreword and contents editor, Dr. Wynne Davies, MBBCh, DRCOG, DCH, FRCA, FFICM, University College London Hospitals NHS Foundation Trust, UK, statistical editor, Dr. Rebecca Gilbert, PhD, School of Social and Community Medicine, University of Bristol, UK.
pages cm
Includes index.
ISBN 978-1-107-63660-6 (Paperback)

1. Anesthesia—Examinations, questions, etc. 2. Anesthesiology—Examinations, questions, etc.
I. Wittenberg, Marc D. II. Davies, Wynne (David Wynne Lloyd) III. Gilbert, Rebecca. IV. Title.
RD82.3.G55 2014
617.9’6076-.dc23 2013045304

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved.

Nevertheless, the authors, editors and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.
To those nearest and dearest to me, to Ma for her omniscient advice, and above all to Grace for putting up with me.

Ned Gilbert-Kawai

To my parents for their unwavering love and support, to Eytan and Noa for showing me what life is about, and most of all to my rock, Dalya, without whom none of this would be possible.

Marc Wittenberg
Contents

Foreword Wynne Davies xiii
Preface ... xv
Acknowledgements xvii

SECTION 1 – PHYSICS

Part 1a Gases

1. Boyle’s law 1
2. Charles’ law 3
3. Gay-Lussac’s law (third gas law) 5
4. Avogadro’s equation 7
5. Universal gas equation 9
6. Dalton’s law of partial pressures 11
7. Henry’s law 13
8. Graham’s law of diffusion 15

Part 1b Pressure and flow

1. Pressure and force 17
2. Hagen–Poiseuille equation (and laminar flow) 19
3. Reynold’s number (and turbulent flow) 21
4. Laplace’s law and tension 24
5. Bernoulli equation and Venturi effect 26
Part 1c Electricity

1. Ohm’s law, voltage, current and resistance 28
2. Capacitance and capacitors 31
3. Inductance and inductors 33
4. Work and power 35
5. Transformers 37
6. Electrical charge 39

Part 1d Other

1. Doppler equation and effect 41
2. Beer–Lambert law 43
3. Relative humidity 45
4. Natural frequency 46
5. Wave equation and ultrasound 48

SECTION 2 – PHARMACOLOGY

Part 2a Pharmacokinetics

1. Bioavailability 50
2. Volume of distribution 53
3. Clearance 55
4. Hepatic clearance 57
5. Concentration and elimination 59
6. Plasma concentration and compartment models 61
7. Loading dose and maintenance dose 63
8. Exponential function and rate constant 65
9. Half-life and context-sensitive half-life 68
10. Time constant 71
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Rates of reaction</td>
<td>73</td>
</tr>
<tr>
<td>12. Michaelis–Menten equation</td>
<td>75</td>
</tr>
</tbody>
</table>

Part 2b Pharmacodynamics

1. Drug–receptor dissociation constant and affinity 77
2. Therapeutic index 79

SECTION 3 – PHYSIOLOGY

Part 3a Cardiovascular

1. Cardiac output and cardiac index 81
2. Stroke volume 83
3. Ventricular stroke work and index 85
4. Ejection fraction and fractional area change 87
5. Coronary perfusion pressure and coronary blood flow 89
6. Bazett’s formula – QT interval corrected 91
7. The Fick principle – cardiac output measurement 92
8. The Fick equation – oxygen uptake measurement 94
9. Mean arterial pressure 96
10. Venous return 98
11. Total blood volume 100
12. Systemic vascular resistance 102
13. Uterine blood flow 104
14. Stewart–Hamilton equation 106
15. Oxygen delivery 108
16. Oxygen extraction ratio 110
17. Oxygen content equation 112
18. The dilution principle – measurement of fluid compartment volume 114
Part 3b Respiratory

1. Diffusing capacity 115
2. Compliance 117
3. Bohr equation 119
4. Alveolar ventilation equation 121
5. Alveolar gas equation 123
6. Helium dilution technique 125
7. Spirometry: forced expiration 127
8. Lung volumes and capacities 128
9. Respiratory quotient and respiratory exchange ratio 130
10. Shunt equation 132
11. Pulmonary vascular resistance 134

Part 3c Renal

1. Renal filtration fraction 136
2. Renal clearance and Cockcroft–Gault formula 137
3. Starling’s equation – rate of filtration 139
4. Fick’s law of diffusion 141

Part 3d Cellular, biochemical and acid–base

1. Osmolality/osmolarity and the osmolar gap 143
2. Morse equation and osmotic pressure 145
3. Anion gap 147
4. Goldman equation 149
5. Gibbs–Donnan effect 151
6. Nernst equation 153
7. pH 155
8. pKa 157
9. Acid–base compensation simplified 159
10. Henderson–Hasselbalch equation 161

Part 3e Neurological
1. Cerebral perfusion pressure and intracranial pressure 163
2. Intraocular pressure 165

SECTION 4 – STATISTICS
1. Binary classification tests and 2×2 tables 167
2. Negative predictive value 168
3. Positive predictive value 170
4. Specificity 172
5. Sensitivity 174
6. Relative risk 176
7. Relative risk reduction 178
8. Absolute risk reduction 180
9. Accuracy of test 182
10. Chi-squared test 184
11. Likelihood ratio 186
12. Standard error of mean 188
13. Standard deviation and variance 189
14. Power 191
15. Odds ratio 192

Appendix
1. The International System of Units 194
2. Units of measurement 196

Index 197
Foreword

Sitting examinations is a stressful time; answers are often all too apparent in the coffee room chat following the exit from the examination hall. The way we retrieve and process information has changed. The long evenings spent in the library browsing the Index Medicus are fortunately long gone, and have been replaced by much more instant online resources. The information revolution continues, and as wireless technology becomes universal, so access to information will become even more instant.

However, interpretation and emphasis is always going to need guidance. Deriving and remembering equations is a daunting task, particularly when trying to relate them to a clinical context; this book brings together many of the mathematical concepts in anaesthesia into one place. It is an invaluable reference guide to the equations used in anaesthesia today, with a brief explanation of units, and examples of each equation’s relevance to clinical practice.

While the authors have attempted to include all equations relevant to post-graduate anaesthetic exams, it is not a panacea for all formulae, but a concise reference text for revision purposes. Succinct and clearly laid out, it enables candidates to build on their academic knowledge, and provides a fresh insight into the clinical applications of the mathematical concepts relevant to anaesthesia.

Doctors Gilbert-Kawai and Wittenberg’s Essential Equations for Anaesthesia successfully complements other key medical texts as an equation reference guide that will be indispensable to all trainees in anaesthesia, and a refresher for those of us who took the examinations some time ago, before the advent of the information technology revolution.

Dr Wynne Davies MBCh, DRCOG, DCH, FRCA, FFICM
One must divide one’s time between politics and equations. Equations however are much more important to me, for whilst politics concerns the present, our equations are for eternity.

Albert Einstein (1879–1955)

As practising anaesthetic registrars, we are keenly aware of the challenges and pressures faced by all trainees taking the anaesthetic examinations. Among the seemingly insurmountable mountain of facts and figures that one is expected to know relating to physiology, pharmacology, physics and statistics, knowledge of equations and their derivation, use and application to anaesthetics is an absolute prerequisite.

Unfortunately, while commonly regarded by candidates as a ‘nightmare exam question’, this is often a favourite with examiners, particularly in the spoken viva exams. Easy marks to win if one can demonstrate their knowledge through a straightforward, clinically applied approach, or easy marks to lose if poorly answered. Learned by rote, attempts to derive and link their application to clinical practice can leave a candidate floundering – a huge forfeiture in an exam where every mark counts.

With this in mind, and having had to refer to nearly 20 books and multiple websites while undertaking our own revision, none of them contained a comprehensive list of the multitude of different equations that we were required to know. And thus it was, during a coffee break between theatre lists, that the idea of this book was born: a simple, handy, reference guide to all the equations required for the anaesthetics examination, with concise explanations and examples of their direct relevance to clinical practice.

The book is broadly divided into the four subject areas of physics, physiology, pharmacology and statistics. Each equation is explained, derived where necessary, and a worked or clinically relevant example provided to demonstrate its use. Units and relevant terms are given and, where required, clear, concise diagrams have also been provided to simplify understanding. For general interest, the historical background relating to an equation’s nomenclature has also been given wherever possible. We expect readers to use it as a source of reference, and enablement to relate the equations to clinical anaesthesia and intensive care medicine.
Our hope is that a clearer understanding of the topic will significantly diminish the fear around this important aspect of the exam. Indeed, it is also hoped that this book will be of use not only to those preparing for examinations, but also to practising anaesthetists, as many of the equations in this book are directly relevant to clinical practice.

Because thorough preparation for any examination cannot be dependent on one text alone, this book is intended to complement, rather than supplant, other reference works, and is not a replacement for robust knowledge. Nor is there any substitute for hard work. Our intention is that using this book will smooth your passage towards successful completion of the examinations and we wish you good luck: if you are reading this, it means there is light at the end of the tunnel.

EG-K and MW
October 2013
Acknowledgements

We very gratefully acknowledge the guidance and support given to us by Dr Wynne Davies. His role in editing the book’s content and continuous encouragement has been invaluable in bringing this book to life.

We also express our deep thanks to Dr Rebecca Gilbert for her advice and editorial role on the statistics section.