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Introduction

To a large extent this book is an updated version of Lectures on Topological
Dynamics by Robert Ellis [Ellis, R., (1969)]. That book gave an exposition
of what might be called an algebraic theory of minimal sets. Our goal here
is to give a clear, self contained exposition of a new approach to the theory
which allows for more straightforward proofs and develops a clearer language
for expressing many of the fundamental ideas. We have included a treatment
of many of the results in the aforementioned exposition, in addition to more
recent developments in the theory; we have not attempted, however, to give
a complete or exhaustive treatment of all the known results in the algebraic
theory of minimal sets. Our hope is that the reader will be motivated to use the
language and techniques to study related topics not touched on here. Some of
these are mentioned either in the exercises or notes given at the end of various
sections. This book should be suitable for a graduate course in topological
dynamics whose prerequisites need only include some background in topology.
We assume the reader is familiar with compact Hausdorff spaces, convergence
of nets, etc., and perhaps has had some exposure to uniform structures and
pseudo metrics which play a limited role in our exposition.

A flow is a triple (X, T, w) where X is a compact Hausdorff space, T is a
topological group, and 7 : X x T — X is a continuous action of 7 on X,
so that xe = x and (xt)s = x(¢s) forall x € X, s,t € T. Here we write
xt = mw(x,t) forall x € X andt € T, and e is the identity of the group
T. Usually the symbol & will be omitted and the flow (X, T, ) denoted by
(X, T) or simply by X. In the situations considered here there is no loss of
generality if T is given the discrete topology. The assumptions made thus far
do not suffice to produce an interesting theory. The group 7' may be too “small”
in its action on X. Thus for example, the trivial case where xt = xo, a fixed
element of X, for all x € X and ¢t € T, is not ruled out. To eliminate such
degenerate behavior it is convenient to assume that the flow (X, T') is point

ix
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X Introduction

transitive, i.e. that there exists xo € X such that its orbit xo7 = {xot | t € T}
is dense in X.

The category P of point transitive flows has the remarkable property that
it possesses a universal object; i,e, there exists a point transitive flow (87, T')
such that any flow in P is a homomorphic image of BT. (See section 1 for a
description of (BT, T) and the proof of its universality.) Moreover, one may
associate in a canonical fashion with any flow (X, 7') a point transitive flow
E(X,T). The latter, called the enveloping semigroup has proved extremely
useful in the study of the dynamical properties of the original flow (X, 7). The
enveloping semigroup is defined and studied in section 2, and examples of its
use are scattered throughout the subsequent sections.

This exposition focuses, however, on the category, M, of minimal flows.
These are flows for which the orbit of every point x € X is dense; that is
xT = {xt [t €T} = X for all x € X. Again there exists a (unique up to
isomorphism) universal object M in M. This fact was exploited in several
papers to develop an “algebraic theory” of minimal flows. In particular a group
was associated with each such flow and various relations among minimal flows
studied by means of these groups. One purpose of this volume is to collect in
one place the techniques which have proved useful in this study; another goal
is to provide an exposition of a new approach to this material.

The account of this algebraic theory of minimal flows given in Lectures on
Topological Dynamics depends heavily on an algebraic point of view derived
by studying the collection C(X) of continuous functions on X rather than X
itself. In this volume we instead exploit the fact that X, as a homomorphic
image of M, is of the form M /R for some icer (invariant closed equivalence
relation) on M. We study the flow (X, T') via the icer R rather than the algebra
C(X).

Another change is that the role of the group of automorphisms of a flow is
emphasized. In particular the group G of automorphisms of M plays a crucial
role. It is used both to codify the algebraic structure of M, and to define the
groups associated to the minimal flows in M. In the earlier approach G was
viewed as a subset Mu of M, where u € M was a fixed idempotent. The new
approach eliminates the asymmetrical treatment of the idempotents. Instead
we view M = [+ G(u) as a disjoint union (taken over all the idempotents
in u € M) of the images of the idempotents under the group G. Thus we
explicitly take advantage of the fact that every p € M can be written uniquely
in the form o (#) with ¢ € G and u an idempotent in M. This approach also
makes reliance on the concept of a pointed flow unnecessary. Previously the
concept of a pointed flow was used to define, up to conjugacy, the group of
a minimal flow; a different choice of base point corresponding to a conjugate
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Introduction X1

subgroup of Mu. From the point of view of icers on M, the group of the flow
M /R is the subgroup:

G(R) ={a e G |gr(a) C R},

of G. Here gr(a) = {(p,a(p)) | p € M} is the graph of the automorphism
o of M. Again if S is an icer with M/R = M/S, then G(S) is conjugate to
G(R).

One of the important tools for the study of minimal flows is the so-called
T-topology on G. In section 10 we show how one can define a topology on the
automorphism group Aut(X) of any regular flow (X, T'). Since G = Aut (M)
and (M, T) is regular, this allows one to define a topology on G. This topology
on G coincides with the original definition of the t-topology. (The idea for
this viewpoint stems from J. Auslander’s approach to the t-topology—private
communication.)

We would now like to make a few comments on some of the results which
have been included herein. In part I we lay the foundation for what follows by
treating the universal constructions upon which much of the later material is
based. This includes an introduction to ST, the enveloping semigroup, and the
universal minimal flow. The flow (2%, T') whose minimal subflows are the so-
called quasi-factors of the minimal flow (X, T') is discussed in section 5. Here
2% is the collection of non-empty closed subsets of X. The space 2% is given
the Vietoris topology detailed in the appendix to section 5. The extension of
the action of 7 on 2% to an action of BT on 2% via the circle operator is also
discussed in section 5, and used later in sections 12 and 17.

Part IT develops many of the techniques and language critical to our approach.
As mentioned above, this approach hinges on identifying minimal flows as
quotients of M by icers. We need not only to associate to any minimal flow an
icer on M, but to any icer on M a minimal flow. The basic topological result
needed is that the quotient of any compact Hausdorff space by a closed equiv-
alence relation is again a compact Hausdorff space. Section 6 includes a proof
of this result and a discussion of the relative product of two relations, a useful
tool for constructing equivalence relations.

The fundamental result concerning icers on M is proven in section 7. We
show that any icer R on M can be written as a relative product

R = (RN Py) o gr(G(R))

where Py = {(a(u), ®(v)) | « € G and u, v are idempotents in M} (see 7.21).
Regular flows, whose original definition is motivated in terms of automor-
phisms, are those flows whose representation as a quotient M /R is unique.
The flow (M, T') is of course regular, and its structure serves as a prototype
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xii Introduction

for the algebraic structure of regular flows outlined in section 8. In particular,
if (X, T) is a regular flow, then the pair {X, Aut(X)} has properties analogous
to those of the pair {M, G}, some of which were alluded to above.

In part III we give a detailed exposition of the approach to the T-topology
mentioned earlier. When applied to the group Aut (X), for any regular minimal
flow (X, T'), we obtain a topology which is compact and T but not Hausdorff.
The construction of a derived group F' for any closed subgroup F C Aut(X)
is given in section 11. F’ is a normal subgroup of F which measures the extent
to which F fails to be Hausdorff; in fact for any closed subgroup H C F,
the quotient space F/H is Hausdorff if and only if F' C H (see 11.10). In
section 12 we give a proof of the fact that there exists a minimal flow X whose
group G(X) = A if and only if A is a t-closed subgroup of G. One example
of such a flow is M /R where

R =gr(A) = Jlgr@) |« € A)}.

The basic idea of the proof, which uses the material on quasi-factors, is the
same as in Lectures on Topological Dynamics but the language of the current
approach allows a more efficient treatment.

Part IV is motivated by the questions: How are the various subgroups of G
related to one another, and what do they tell us about the dynamics of minimal
flows? It has long been known that the subcategories D and £ of minimal
distal and minimal equicontinuous flows respectively also possess universal
objects Xp and X¢. Heretofore the groups D and E have been defined as
the groups associated to these flows, i.e. D = G(Xp) and E = G(Xg). In
sections 14 and 15 we obtain intrinsic characterizations of D (see 14.6), and E
(see 15.23) respectively. This gives content to the statements: if X is distal, then
D C G(X), and if X is equicontinuous, then £ C G (X). In fact, emphasizing
the language of icers, M /R is distal (respectively equicontinuous) if and only if

R = Pyogr(A)

with D C A (respectively E C A). For proofs see 14.10 and 15.14 respec-
tively. In particular distal and equicontinuous flows are completely determined
by their groups. We show in 15.21 that G’'D = E, from which it follows
immediately that (X, 7') is equicontinuous if and only if (X, T) is distal and
G’ C G(X). In section 13 we discuss the proximal relation P(X) on a min-
imal flow X. In analogy with the distal and equicontinuous cases, we give a
description of a subgroup P C G and show that P(X) is an equivalence rela-
tion if and only if P C G(X). Another subgroup G’ C G is introduced and
we show that P(X) is an equivalence relation with closed cells if and only
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if PG’ ¢ G(X). In fact PG’ %D which is consistent with the well-known

result that P(X) is a closed invariant equivalence relation on X if and only if
D C G(X). (see 14.8) In section 15 the regionally proximal relation, Q(X) of
a minimal flow (X, T) is introduced to facilitate the study of equicontinuous
flows. (Recall that (X, T) is equicontinuous if and only if Q(X) = Ay the
diagonal in X x X.) The case Q = Q(M) is also used to define the group E.
Equicontinuous minimal flows are discussed from the point of view of icers on
M in the body of section 15, while the approach to the same material via the
enveloping semigroup is treated in the appendix. Q(X) is discussed in further
detail in section 15 where we give a new proof of the fact that if E C G'G(X),
then Q(X) is an equivalence relation.

To a large extent part V is concerned with generalizing the results of part IV
to homomorphisms (extensions) of minimal flows. For instance for icers R C
S on M, the canonical projection M/R — M/S is a distal homomorphism if
and only if

S = (RN Py ogr(G(9)),

moreover the extension is equicontinuous if and only if G(S)’ C G(R). We
close with a section devoted to four theorems all of which are equivalent to
the Furstenberg structure theorem for distal extensions; this section uses the
language of icers and the techniques developed in the earlier sections to give
proofs that all four theorems are equivalent. This fact does not seem to have
been emphasized in the literature, and provides a good opportunity to illus-
trate the language and techniques developed in the book. This analysis also
illustrates an interesting twist to the icer approach. Here not only does the
structure of the icers R and S come into play in understanding the extension
M/R — M/S, the dynamics of the icer on M /R whose quotient gives M /S
also plays an important role. The construction of the so-called Furstenberg
tower provides another nice illustration of the language of icers; the stages
in the tower are explicitly constructed using icers which are themselves con-
structed from the groups involved.

Section 20 itself does not contain the proof of the Furstenberg theorem.
Instead we give a chart describing where proofs of various special cases appear
in the text. On the other hand a complete proof for compact Hausdorff spaces,
of the fact that any icer on a minimal flow which is both topologically tran-
sitive and pointwise almost periodic must be trivial (one of the equivalents
of the Furstenberg structure theorem) appears in 9.13. This is because our
proof relies on the concept of the quasi-relative product developed in section 9.
Indeed the quasi-relative product arose during our attempt to give a proof of
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the Furstenberg theorem in its full generality. The metric case of the theorem
follows immediately from the fact that for metric flows the notions of point-
transitivity and topological transitivity coincide. Our proof in the general case
proceeds by reducing it to the metric case; the key tool in the construction
which enables this is the quasi-relative product. While the quasi-relative prod-
uct is only necessary for the most general version of the Furstenberg theorem,
it turns out to be closely connected to quasi-factors (hence the name) and RIC
extensions. We detail these connections in sections 9 and 17 respectively.

A word about format

We have written this book using a theorem-proof format. All the proofs are
given using a sequence of numbered steps for which reasons are given at each
stage. There are two main reasons for this approach. The first is to make sure
that the arguments are as clear and accessible as possible. We found that insist-
ing on numbering our steps and giving reasons forced a rigor, clarity, and atten-
tion to detail we hope the reader will appreciate. We have attempted to avoid
situations where as the material becomes more complex the reader is expected
to fill in more gaps in the arguments.

In addition to a better understanding of the details of the individual argu-
ments, we hope that the format adds to the clarity of the overall exposition.
The assumptions and conclusions of each of the lemmas, propositions, and
theorems are stated carefully and precisely in a consistent format. These items
are all numbered so that they can be referred to in a precise and unambiguous
way as the exposition proceeds. We have tried to keep the proofs reasonably
short and have divided the material into short sections, typically ten to fifteen
pages long. In addition, we begin each section with an introduction designed
to give an informal outline and motivation for the material in that section. The
reader who wishes to go lightly on the intricate details, may wish to follow the
train of thought by focusing on the introductions to each section and skipping
the proofs. In this case, if a specific result attracts the reader’s interest, then
the numbering system should facilitate a more careful reading of the details.
This format is designed especially for the student who is not yet an expert; it
assures that careful attention is paid to the details and that the train of thought
is readily accessible.
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