PROTOPLANETARY DUST
Astrophysical and Cosmochemical Perspectives

Planet-formation studies uniquely benefit from three disciplines: astronomical observations of extrasolar planet-forming disks, analysis of material from the early Solar System, and laboratory astrophysics experiments. Pre-planetary solids, fine dust, and chondritic components are central elements linking these studies.

This book is the first comprehensive overview of planet formation, in which astronomers, cosmochemists, and laboratory astrophysicists jointly discuss the latest insights from the Spitzer and Hubble space telescopes, new interferometers, space missions including Stardust and Deep Impact, and laboratory techniques. Following the evolution of solids from their genesis through protoplanetary disks to rocky planets, the book discusses in detail how the latest results from these disciplines fit into a coherent picture. This volume provides a clear introduction and valuable reference for students and researchers in astronomy, cosmochemistry, laboratory astrophysics, and planetary sciences.

DÁNIEL APAI is an Assistant Astronomer at the Space Telescope Science Institute. His research focuses on the observational characterization of the origins and properties of extrasolar planets and planetary systems.

DANTE S. LAURETTA is Associate Professor of Planetary Science and Cosmochemistry at the University of Arizona's Lunar and Planetary Laboratory. His research interests include the chemistry and mineralogy of asteroids and comets as determined by in situ laboratory analysis and spacecraft observations.
Cambridge Planetary Science

Series Editors: Fran Bagenal, David Jewitt, Carl Murray, Jim Bell, Ralph Lorenz, Francis Nimmo, Sara Russell

Books in the series

1. *Jupiter: The Planet, Satellites and Magnetosphere*†
 Edited by Bagenal, Dowling and McKinnon
 978-0-521-03545-3
2. *Meteorites: A Petrologic, Chemical and Isotopic Synthesis*†
 Hutchison
 978-0-521-03539-2
3. *The Origin of Chondrules and Chondrites*
 Sears
 978-0-521-83603-6
4. *Planetary Rings*
 Esposito
 978-0-521-36222-1
5. *The Geology of Mars: Evidence from Earth-Based Analogues*
 Edited by Chapman
 978-0-521-83292-2
6. *The Surface of Mars*
 Carr
 978-0-521-87201-0
7. *Volcanism on Io: A Comparison with Earth*
 Davies
 978-0-521-85003-2
8. *Mars: An Introduction to its Interior, Surface and Atmosphere*
 Barlow
 978-0-521-85226-5
9. *The Martian Surface: Composition, Mineralogy and Physical Properties*
 Edited by Bell
 978-0-521-86698-9
10. *Planetary Crusts: Their Composition, Origin and Evolution*
 Taylor and McLennan
 978-0-521-84186-3
11. *Planetary Tectonics*
 Edited by Watters and Schultz
 978-0-521-76573-2
12. *Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives*
 Edited by Apai and Lauretta
 978-0-521-51772-0

† Issued as a paperback
PROTOPLANETARY DUST
Astrophysical and Cosmochemical Perspectives

Edited by
DÁNIEL APAI
Space Telescope Science Institute
AND
DANTE S. LAURETTA
University of Arizona
Contents

List of contributing authors xi
Preface xv
Acknowledgments xviii

1 Planet formation and protoplanetary dust 1
 1.1 Types of extraterrestrial material available 2
 1.2 Chronology of planet formation 6
 1.3 Protostellar collapse 8
 1.4 Structural evolution of protoplanetary disks 9
 1.5 Chemical evolution of the gas disks 11
 1.6 Laboratory dust analogs 12
 1.7 Dust composition in protoplanetary disks 13
 1.8 Dust coagulation 14
 1.9 Thermal processing of the pre-planetary material 15
 1.10 Dispersal of protoplanetary disks 17
 1.11 Accretion of planetesimals and rocky planets 18
 1.12 Key challenges and perspectives 19

2 The origins of protoplanetary dust and the formation of accretion disks 27
 2.1 Dust in the interstellar medium 28
 2.2 Presolar grains in primitive Solar System materials 40
 2.3 Star formation 52

3 Evolution of protoplanetary disk structures 66
 3.1 Some properties of protoplanetary disks 67
 3.2 Protoplanetary disk structure and evolution 70
 3.3 Particle dynamics 80
Contents

3.4 Protoplanetary disk dynamics and dust evolution 85
3.5 Summary 92

4 Chemical and isotopic evolution of the solar nebula and protoplanetary disks 97
4.1 Protoplanetary disks 99
4.2 Chemical constraints from early Solar System materials 110
4.3 Isotopic anomalies and condensation sequence 111
4.4 Oxygen isotopes 113
4.5 Summary 122

5 Laboratory studies of simple dust analogs in astrophysical environments 128
5.1 Dust-analog synthesis 131
5.2 Characterization techniques 136
5.3 Dust processing 140
5.4 Grain-growth studies 143
5.5 Grain-catalysis studies 149
5.6 Conclusion 155

6 Dust composition in protoplanetary disks 161
6.1 Modeling the dust composition 162
6.2 Laboratory studies of Solar System dust 164
6.3 Dust composition in Solar System samples 166
6.4 Remote sensing of dust around young stars and in comets 170
6.5 Composition of the dust 177
6.6 Processing history of grains as derived from the dust composition 185

7 Dust particle size evolution 191
7.1 Dust coagulation in the Solar System and in extrasolar protoplanetary disks 192
7.2 Nomenclature and definitions 193
7.3 Coagulation basics 196
7.4 Laboratory simulations of dust coagulation 197
7.5 Observational tracers of grain coagulation 198
7.6 Chondritic meteorites 206
7.7 What do chondrite matrices tell us about the grain size of nebular dust? 214
7.8 Dust coagulation: how and when? 217
7.9 Constraints on dust coagulation from amorphous silicates 219
Contents

7.10 When did dust coagulation occur? 221
7.11 Astronomical versus meteoritic constraints 223

8 Thermal processing in protoplanetary nebulae 230
8.1 Thermal processing: annealing and evaporation 231
8.2 Observations of thermal processing in protoplanetary disks 234
8.3 Thermal processing in the Solar System: chondrites 241
8.4 Heating mechanisms 250
8.5 How would Solar System formation look to an outside observer 256
8.6 Promising future experiments 257

9 The clearing of protoplanetary disks and of the proto-solar nebula 263
9.1 The observed lifetime of protoplanetary disks 263
9.2 Disk dispersal processes 274
9.3 Our Solar System 277
9.4 Discussion 288

10 Accretion of planetesimals and the formation of rocky planets 299
10.1 Observational constraints on rocky-planet formation 300
10.2 Planetesimal formation 304
10.3 Growth of rocky planets 312
10.4 The effect of the giant planets and the formation of the Asteroid Belt 321
10.5 Summary 328

Appendix 1 Common minerals in the Solar System 336
Appendix 2 Mass spectrometry 340
Appendix 3 Basics of light absorption and scattering theory 343

Glossary 349
Index 363
Contributing authors

Dániel Apai
Space Telescope Science Institute
3700 San Martin Drive
Baltimore, MD 21218, USA

Adrian J. Brearley
Department of Earth and Planetary Sciences
MSc03-2040
University of New Mexico
Albuquerque, NM 87131, USA

John R. Brucato
INAF – Osservatorio Astrofisico di Arcetri
L.go E. Fermi 5, 50125 Firenze, Italy

Subrata Chakraborty
University of California, San Diego
Department of Chemistry and Biochemistry
9500 Gilman Dr.
La Jolla CA 92093-0356, USA

John E. Chambers
Department of Terrestrial Magnetism
Carnegie Institution of Washington
5241 Broad Branch Road, NW
Washington, DC 20015-1305, USA

Fred J. Ciesla
Department of the Geophysical Sciences
University of Chicago
5734 South Ellis Avenue
Chicago, IL 60637–1433, USA
List of contributing authors

Harold C. Connolly Jr.
Earth and Planetary Sciences
Kingsborough College of the City University of New York
Department of Physical Sciences
2001 Oriental Blvd.
Brooklyn, NY 11235, USA
and
Lunar and Planetary Laboratory
University of Arizona
Tucson, AZ 85721, USA

Andrew M. Davis
Department of the Geophysical Sciences, Enrico Fermi Institute
and
Chicago Center for Cosmochemistry, University of Chicago
5734 South Ellis Avenue
Chicago, IL 60637-1433, USA

Cornelis P. Dullemond
Max Planck Institute for Astronomy
Koenigstuhl 17
D-69117 Heidelberg, Germany

George Flynn
316 Hudson Hall
SUNY Plattsburgh
101 Broad Str.
Plattsburgh, New York 12901, USA

Hans-Peter Gail
Center for Astronomy of the University of Heidelberg
Institute for Theoretical Astrophysics
Albert–Überle-Str. 2
D-69120 Heidelberg, Germany

Peter Hoppe
Particle Chemistry Department
Max Planck Institute for Chemistry
P.O. Box 3060, D–55020 Mainz, Germany

Dante S. Lauretta
Lunar and Planetary Laboratory
The University of Arizona
List of contributing authors

1629 E. University Blvd.
Tucson, AZ 85721, USA

Michiel Min
Astronomical Institute Anton Pannekoek
Kruislaan 403
1098 SJ Amsterdam, The Netherlands

Joseph A. Nuth III
Astrochemistry Laboratory, Code 691
NASA Goddard Space Flight Center
Greenbelt, MD 20771, USA

David P. O’Brien
Planetary Science Institute
1700 E. Ft. Lowell, Suite 106
Tucson, AZ 85719, USA

Ilaria Pascucci
Department of Physics & Astronomy
Johns Hopkins University
366 Bloomberg Center
3400 N. Charles Street
Baltimore, MD 21218, USA

Klaus M. Pontoppidan
Division of Geological and Planetary Sciences
California Institute of Technology, MS 150-21,
Pasadena, CA 91125, USA

Dmitry Semenov
Max Planck Institute for Astronomy
Koenigstuhl 17
D-69117 Heidelberg, Germany

Shogo Tachibana
Department of Earth and Planetary Science (Bldg.1)
The University of Tokyo
7-3-1 Hongo, Tokyo 113–0033, Japan

Mark Thiemens
University of California, San Diego
Department of Chemistry and Biochemistry
9500 Gilman Dr.
La Jolla, CA 92093-0356, USA
Preface

Some fundamental questions are surprisingly simple: Where did we come from? Are we alone in the Universe? These two simple questions have been pondered on and debated over by hundreds of generations. Yet, these questions proved to be very difficult to answer. Today, however, they have shifted from the realm of religious and philosophical discussions to the lecture rooms and laboratories of hard sciences: they are, indeed, among the drivers of modern astrophysics and planetary sciences.

Fortunately, and perhaps surprisingly, the Universe provides a means to address these important questions. Today we are witnessing as the answers emerge to these age-old questions. We now know that asteroids and comets of the Solar System have preserved a detailed record of the dramatic events that four billion years ago gave birth to our planetary system in only a few million years. Gravity and radiation pressure conspire to deliver almost pristine samples of the early Solar System to Earth in the form of meteorites and interplanetary dust particles. We have also taken this process one step further with the successful return of particles from the coma of comet Wild 2 by NASA’s Stardust mission. Detailed chemical and mineralogical analyses of these materials allow for the reconstruction of the history of our planetary system.

We can address the questions of the ubiquity of planetary systems in our galaxy by comparing the conditions and events of the early Solar System to circumstellar disks in star-forming regions. Technological wonders, such as the Hubble and Spitzer space telescopes, have allowed direct imaging of disks in which planetary systems are thought to form and enable comparative mineralogy of dust grains hundreds of light years away.

Over the past decade these exciting advances have transformed our understanding of the origins of planetary systems. Astronomers provide exquisite observations of nascent planetary systems. Cosmochemists reconstruct the detailed history of the first ten million years of the Solar System. Circumstellar disks and, in particular,
the evolution of dust grains play a pivotal role in the formation and early evolution of planetary systems, including our own.

The chance collisions and sticking of a few tiny dust grains around a young star: these are the first steps in a long and fascinating journey that a few million years later culminate in violent, catastrophic collisions of hot, molten protoplanets as a new planetary system is born. The evolution of these dust grains and the dust disk itself is the best-studied and most-constrained phase of planet formation. We can observe dust grains as they form during the death throes of a previous generation of stars and as they are injected into interstellar space. We know that these grains are then altered by the harsh radiation fields and shock waves that propagate through the interstellar medium. Dust, concentrated into giant molecular clouds, is entrained in the gas that dominates the mass of these systems. We can identify evolutionary snapshots as some of the densest parts of clouds become unstable, collapse, and form stars surrounded by accretion disks. The dynamic and turbulent conditions in these disks lead to the evaporation, melting, crystallization, amorphization, and agglomeration of primordial and newly formed dust grains. The dust particles accrete into planetesimals, many of which persist throughout the stellar lifetime. These small bodies collide with each other, producing more dust but also, in some cases, growing to planetary bodies. This book is an attempt to synthesize our current state of knowledge of the history of this dust, from the interstellar medium where stars and planets are born to the final stages of planetary accretion using both astronomical and cosmochemical perspectives.

Astronomers study the evolution of protoplanetary disks on large scales, measuring simple, general properties of hundreds of disks. Planetary scientists, in contrast, unravel the detailed history of our Solar System by meticulous characterization of the solid remnants of the earliest epochs combined with dynamical simulation of the formation and accretion of particles from dust grains to planets. However, there has long been a disconnection between specialists in these two allied disciplines. Although they study the same processes and address the same questions, communication has been difficult because of differences in methods, concepts, terminology, instrumentation, analytical techniques, and the scientific forums where cutting-edge results are presented. This problem is not new. Twenty-seven years ago Tom Gehrels in his Introduction to Protostars and Planets noted the “growing separation between astronomers and planetary scientists.” Although the problem persists, we believe that today astronomy and planetary science are intersecting in many places; questions where the two disciplines overlap benefit from a diversity of constraints and allow the transport of ideas and concepts. In particular, there appears to be an important convergence in the study of the origins of planetary systems.

This book builds bridges between astronomy and planetary sciences. It does so to capitalize from the value of the common questions and the different approaches.
Therefore, in designing this volume we decided from day one to merge diverse perspectives in each topic. The authors for each chapter were selected to represent distinct disciplines focused on the same question. The long, heated, and constructive discussions that ensued from pairing specialist authors with different backgrounds brought a real novel value to these chapters. This mix was further enriched by the referees’ work – typically three or four for each chapter – that added diverse perspectives. They worked very hard to check the emerging text repeatedly and their essential help made this book truly a community effort.

We are immensely satisfied with the results. In the course of this work we have learned an enormous amount, from the contributing authors and also from each other. This volume presents the comprehensive history of the birth and early development of planetary systems – it provides a complex and fascinating story to partly answer a simple, yet fundamental question.

We hope you enjoy reading the book as much as we enjoyed compiling it.

Dániel Apai and Dante S. Lauretta
Acknowledgments

We are grateful to the following colleagues for motivating discussions or for reviewing chapter manuscripts: Anja Andersen, Phil Armitage, Ted Bergin, Roy van Boekel, Jade Bond, Bill Bottke, Fred Ciesla, Cathie Clarke, Jeff Cuzzi, Ann Dutrey, Ian Franchi, Lee Hartmann, Louis d’Hendecourt, Frank Hersant, Shigeru Ida, Lindsay Keller, Thorsten Kleine, Guy Libourel, Casey Lisse, Gary Lofgren, Harry Y. McSween, Jr., Scott Messenger, Knut Metzler, James Muzerolle, Larry Nittler, Ilaria Pascucci, Matt Pasek, Mike Sitko, Mario Triloff, Gerhard Wurm, Hisayoshi Yurimoto, Thomas Henning, and Michael R. Meyer. We thank Linda L. Mamassian for compiling the index for this volume.