The Cambridge Psychological Library

MANUAL SKILL
ITS ORGANIZATION AND DEVELOPMENT
MANUAL SKILL
ITS ORGANIZATION AND DEVELOPMENT

BY

J. W. COX, D.Sc.
Research Fellow of the National Institute of Industrial Psychology, Lecturer in Psychology and Statistical Methods at the City of London College, sometime John Stuart Mill Scholar, University College, London

CAMBRIDGE
AT THE UNIVERSITY PRESS
1934
PREFACE

The study of manual skill with which this volume is concerned would seem to require little justification. Facility with the hand has always been an essential factor in human progress. To-day, as in former times, the amenities of life, and even life itself, depend upon man's ability to acquire the manual and other bodily skills necessary to the execution of his ideas. Modern conditions of existence call for a readiness of eye and hand not less than those of the past. If many of our older crafts have now disappeared, this has been offset, in some measure, by the introduction of skills unknown to former generations, and engendered by the same modern machine methods as have done so much to displace the older forms of craftsmanship. The assembling operations which have been selected for special study in this book are a case in point.

In addition to these claims to scientific study on the grounds of its practical importance, manual skill possesses a further and special interest for the psychologist. This it derives from the close connection between manual and mental development. The appearance in man of the higher mental powers which distinguish him from other animals has been largely determined by his ability to develop and to make effective use of the hand. In the early years of the individual, manual control serves as an index to mental growth, the hand constituting one of the chief sources of experience to this end. Various kinds of handwork have long been recognized in the schools as important educational media.

The present volume, however, will not be concerned with the general problem of mental and manual development, but with problems relating to the acquisition of certain manual skills after normal control of the hand has been developed. Nor will it be possible to consider every kind of manual operation, since, for reasons given in the first chapter, an intensive study of a limited region promises more useful results than a more cursory examination of a wider field.

The manual operations here chosen for study are those involved in the manipulation and adjustment of objects to one another. As such, they represent a large and important class. There are, indeed, few skilled operations which do not call for some measure of manipulative skill of this kind. Such operations include not only the use of the hand as a tool, but also the use of tools by the hand, and extend from the
simple placing of a lid on a tin, or a nut on a bolt, to the high degree of skill needed by the surgeon.

Even here, however, experimental conditions have necessarily imposed limitations upon the number of operations which it has been possible to investigate. The operations involved in assembling work, together with certain simpler tests of manual dexterity, have been chosen for special study as representing a wide class of manipulative operations.

To study these operations from the point of view of practical measurement will be our first concern. Hence the first step will be to investigate the conditions under which the operations could be employed as tests, and to secure reliable measures of individual ability. The next step will be to investigate the relations between the various measures thus secured. Such measures of ability I have termed ‘static functions’; and the investigation of their inter-relations forms the principal topic of the second part of this book. This part will be concerned with the nature of the underlying factors which determine ability at the various operations, and with respect to which individuals may be differentiated and measured. The way in which skill at these manual operations is related to such non-manual activities as mechanical aptitude and general intelligence will also demand careful consideration.

The third step will be to investigate the nature of the changes in ability which are brought about, first by more or less mechanical ‘practice’, and secondly by a special course of ‘training’. Such changes in ability brought about by practice, or by training, I have termed ‘dynamic functions’. An examination of their nature, and of their more important relations, will occupy the third part of this book.

The fourth part will be devoted to an account of the mental processes involved in ability and in improvement at the operations. This is based on observations and introspections which were taken throughout the research, and it includes a short excursion into the psychology of shape. The analysis given in this part describes the cognitive activity in manual work. It indicates that mental processes play a larger part in the acquisition of manual skill than is commonly supposed, and provides the basis of the course of training described in the third part.

Briefly, then, I shall consider first the problem of measuring manual skill. Next, I shall consider the nature of the underlying factors which

1 The first part is introductory in character.
PREFACE

determine its organization. This will be followed by an investigation of the conditions under which manual skill is best developed. Finally, in my analysis, I shall consider an aspect of manual skill which is intimately related to its measurement, its organization and its development.

In concluding this preface, I have many acknowledgments to make. The research was carried out by the aid of a grant made by the Rockefeller Foundation to the National Institute of Industrial Psychology, supplemented by a small grant from the British Association for the Advancement of Science.

The wide programme of testing, practice and training made heavy demands upon the time and attention of my subjects. My best thanks are due to all for so kindly acting in this capacity, and for their detailed observational and introspective notes.

I have also to thank the London and Tottenham Education Committees for permission to carry out work in their schools. To the heads of these schools, Miss M. Manuel and Mr G. H. Thurlay, my thanks are specially due for their careful provision of suitable conditions for testing; and also to their staffs for valuable information about the pupils.

Mr V. Gosden, B.Sc., of the staff of the National Institute of Industrial Psychology, has assisted throughout with the calculations and the preparation of the figures for the press. That I can recall only one minor error in all the checking, and sometimes re-checking, to which his figures were subjected, affords the best tribute to the efficiency with which this work has been done.

Anyone who is at all familiar with ‘tetrad differences’, and with ‘fundaments’ and ‘correlates’, will readily appreciate how much certain parts of the research owe to the writings of my former teacher, Professor C. Spearman, F.R.S. But I am alone responsible alike for the conclusions and for the faults of the present research.

Finally, these acknowledgments would be incomplete without an expression of my gratitude to Dr C. S. Myers, F.R.S., Principal of the Institute. The benefit of his wide knowledge and experience has been freely enjoyed by me throughout the research. It was under the stimulus of his encouragement that the training scheme evolved. Every word has been carefully read by Dr Myers before going to press, and the book owes a great deal to his careful editing.

July 1934

J. W. C.
CONTENTS

Part I. THE SCOPE AND PLAN OF THE PRESENT WORK

CHAPTER I
INTRODUCTORY CONSIDERATIONS

A. IMPORTANCE AND VARIETY OF MANUAL OPERATIONS
 1. In industry
 2. In education

B. PREVIOUS RESEARCH
 1. Simple tests
 2. Limb and body movements

C. SOME ASPECTS OF FURTHER RESEARCH
 1. The measurement of ability
 2. The development of manual skill
 3. The transfer of manual skill
 4. The organization of manual skill
 5. The subjective analysis of manual operations
 (a) Failure to differentiate between operations
 (b) Failure to distinguish the activity from its effect
 (c) Failure to explain
 (d) Failure to indicate psychological processes
 (e) The kind of analysis needed

CHAPTER II
GENERAL SCOPE AND METHODS

A. THE OPERATIONS INVESTIGATED
 1. General character of the operations
 2. Reasons for choosing assembling operations

B. THE FUNCTIONS TO BE MEASURED
 1. ‘Function’ as distinguished from ‘factor’
 2. ‘Static’ and ‘dynamic’ functions
 3. Functions to be measured in analysing ‘mechanical’ assembling
CONTENTS

4. Functions to be measured in analysing ‘routine’ assembling page 19
5. The effects of ‘practice’ and of ‘training’ 21
6. The ‘transfer’ question 22
7. ‘Control’ subjects 22

C. THE MEASUREMENT OF THESE FUNCTIONS 23
1. Accuracy 23
2. The measurement of ‘static’ functions 23
3. The measurement of ‘dynamic’ functions 23

D. INTROSPECTIONS, AND OBSERVATIONS OF INDIVIDUALS 24

CHAPTER III

GENERAL PLAN OF THE RESEARCH

A. OUTLINE OF THE PROGRAMME OF RESEARCH 25
1. The broad lines of inquiry 25
2. Plan of collecting data 25
3. Range of operations 26
4. Range of subjects 26
5. Treatment of data 27
 (a) The trustworthiness of our measures 27
 (b) Influence of practice on reliability 27
 (c) The relation between static functions 28
 (d) The relation between dynamic functions 29
 (e) The curves of ‘practice’ and of ‘training’ 29
 (f) The transfer of practice effects 29
 (g) The transfer of training effects 30

B. DESCRIPTION OF TESTS AND PROCEDURE 30
1. Tests of ‘mechanical’ assembling 30
 (a) Porcelain test, (b) Container test, (c) Wiring test 31, 32

 Procedure 32
 (a) Initial ability at ‘mechanical’ assembling, 32, 33
 (b) Transition from ‘mechanical’ to ‘routine’ stage
CONTENTS

2. Tests of ‘routine’ assembling
 (a) Screw test, (b) Porcelain test, (c) Container test,
 (d) Wedges test, (e) Wiring test, (f) Stripping
 tests
 33, 34
 Procedure
 34
 (a) Initial ability at ‘routine’ assembling, (b) Prac-
 tice at ‘routine’ assembling, (c) Terminal
 ability at ‘routine’ assembling, (d) Procedure
 in the ‘training’ experiment
 34–36

C. SUBJECTS
1. Experiments on analysis and practice
 (a) Adult groups
 36
 (b) Elementary school groups, (i) Boys, (ii) Girls
 37
2. Training experiments
 37

D. FURTHER DATA COLLECTED
1. Measures of intelligence
2. Measures of ‘mechanical’ aptitude
3. Star puzzle and tap tests
4. Simple manual tests
5. Ability at school subjects
6. Ability at drill and games
7. Estimates of ‘intelligence’
8. Estimates of incentive
9. Incentives

E. INCENTIVES

Part II. STATIC FUNCTIONS

CHAPTER IV

RELIABILITY

A. RELIABILITY OF THE MEASURES EMPLOYED
1. Routine tests
 (a) Adults
 (i) Size of coefficients
 (ii) Influence of complexity and number of
 repetitions
 (iii) Practice influences—or random errors?
 (iv) Practical confirmation of repetition theory
 41
 (b) Elementary schoolboys
 (i) Size of coefficients
 (ii) Comparison with adult groups
 44
CONTENTS

2. ‘Intelligence’ test and estimates
 (a) Adults 45
 (b) Elementary schoolboys 45
 (c) Estimates 45
3. Mechanical aptitude tests
 (a) Schoolboys 46
 (b) Schoolgirls 46
4. Variability 46
5. Incentive 47

B. Influence of practice on reliability 47
 1. Two distinct questions 47
 2. Adults 48
 3. Elementary schoolboys 48

CHAPTER V
THE RELATIONS BETWEEN STATIC FUNCTIONS

A. Influence of knowledge and interest on ‘mechanical’ assembling 49

B. Mechanical tests compared with one another and with ‘intelligence’ 50
 1. Schoolboys 50
 2. Schoolgirls 52
 3. Star puzzle test 54

C. ‘Routine’ assembling tests compared with one another and with ‘intelligence’ and ‘incentive’ 54
 1. Adults 54
 2. Schoolboys 57
 (a) Initial measures 57
 (b) Total ability 58
 3. Schoolgirls 59
 (a) ‘Normal’ groups 59
 (b) Backward group 60
 (i) Measurement 60
 (ii) Inter-correlation 62

D. ‘Mechanical’ tests compared with ‘routine’ tests 63

E. Summary 66
CONTENTS

CHAPTER VI

THE FACTORS IN ‘MECHANICAL’ ASSEMBLING

A. Ultimate analysis
 1. Necessity and implication of ultimate analysis 68
 2. The criterion adopted 69
 3. The case of a group-factor 69
 4. Method of applying criterion 70

B. Further evidence of the ‘mechanical’ factor in mechanical aptitude tests 70

C. A group-factor in ‘mechanical’ assembling 71

D. Identification of the three group-factors as a single ‘mechanical’ factor
 1. Correlation with the more general factor 72
 2. Specific correlation 73
 3. Application of the criterion 74

E. Objective analysis of ‘mechanical’ assembling
 1. Resolution into measurable ‘abilities’ 74
 2. Degree of ‘saturation’ 75
 3. Corollary for measurement 76

CHAPTER VII

THE FACTORS IN ‘ROUTINE’ ASSEMBLING

A. Evidence of a group-factor in the ‘routine’ assembling tests
 1. Normal boys and girls 77
 2. Backward girls 78

B. Unitary nature of the ‘routine’ assembling factor
 1. Specific correlation 79
 2. Application of criterion
 (a) Boys, (b) Girls 81-83
 3. Conclusion 88
CONTENTS

C. Relation of the ‘routine’ factor to the ‘mechanical’ factor
 page 84
 1. The question 84
 2. Factors common to ‘routine’ and ‘mechanical’ tests 84
 3. The ‘routine’ factor differentiated from the ‘mechanical’ factor 86
 (a) In ‘routine’ assembling 86
 (b) In ‘stripping’ 89

D. Objective analysis of ‘routine’ assembling 90

CHAPTER VIII

THE RELATION OF SIMPLE MANUAL TESTS TO THE ROUTINE TESTS

A. Aim of extending the inquiry into simpler tests 94

B. The data collected 95
 1. Routine assembling tests 95
 2. Routine stripping tests 95
 3. Simple manual tests 95
 4. General intelligence test 96

C. Examination of results 96
 1. Further evidence of the group-factor in routine assembling and stripping tests 96
 2. Extension of the factor into the simpler manual tests 96
 3. An additional factor in certain ‘simple’ tests 97

D. Summary 99

CHAPTER IX

THE MEASUREMENT OF ABILITY AT ASSEMBLING WORK

A. The ‘abilities’ in assembling work 100
B. Practical requirements for measurement 102
C. Norms and group differences 103
 1. Norms of performance 103
 2. Group differences 103
 (a) Sex, (b) Development 103–106
CONTENTS

Part III. DYNAMIC FUNCTIONS

CHAPTER X

ABILITY AND PRACTICE AT ‘ROUTINE’ OPERATIONS

1. **Practice curves of adults**
 - Individual curves
 - (a) ‘Screws’
 - (b) ‘Porcelains’
 - (c) ‘Containers’
 - (d) ‘Wedges’
 - (e) General observations
2. Composite curves
 - (a) Preliminary considerations
 - (b) The ‘assembling’ curves
 - (c) The ‘stripping’ curves
3. ‘Initial’ and ‘terminal’ ability curves

2. **Practice curves of schoolboys**
 1. Individual curves
 2. Composite curves
 - (a) ‘Assembling’ compared with ‘stripping’
 - (b) ‘Ability’ and ‘improvability’ compared with adults
 - (c) Summary

C. **‘Initial’ compared with ‘terminal’ ability**
 1. Adults
 2. Schoolboys

CHAPTER XI

THE TRANSFER OF ‘PRACTICE’ EFFECTS

A. **Introductory**
B. **Data from adult groups**
C. **Data from schoolboys**
CONTENTS

CHAPTER XII
RELATIONS BETWEEN DYNAMIC FUNCTIONS

A. 'ABILITY' AND 'IMPROVABILITY' page 147
 1. 'Initial' ability compared with 'improvability' 147
 2. 'Total' ability compared with 'improvability' 148
 3. Rate of progress at the same level of ability 152

B. 'ABILITY' AND 'VARIABILITY'
 1. 'Initial' ability compared with 'variability' 157
 2. 'Total' ability compared with 'variability' 157

C. 'IMPROVABILITY' AND 'VARIABILITY'
 157

D. 'IMPROVABILITY' AND 'INTELLIGENCE'
 159

E. SUMMARY 161

CHAPTER XIII
THE TRANSFER OF 'TRAINING' EFFECTS

A. SOME FURTHER QUESTIONS 162
 1. 'Practice' distinguished from 'training' 162
 2. How does the effect transfer? 162
 3. The measurement of improvement 163

B. FURTHER EVIDENCE RELATING TO 'PRACTICE'
 163

C. THE 'TRAINING' EXPERIMENT 164
 1. General plan 164
 2. The training scheme 166
 3. Results 167
 (a) The effect on 'ability' 167
 (b) The effect on 'improvability' 169
 (c) Comparison between practice and training curves 172
 (d) The rôle of intelligence in 'training' 174

D. CONCLUSIONS 176
CONTENTS

Part IV. ANALYTICAL

CHAPTER XIV

SUBJECTIVE ANALYSIS OF 'MECHANICAL' ASSEMBLING

A. Method employed page 178

B. Two sharply differentiated activities 178
 1. The activities concerned 178
 2. How related 179
 (a) Temporally, (b) Psychologically 179
 3. Contingent nature of these relations 181
 4. Relative importance of the two activities 181

C. General nature of the activity peculiar to 'mechanical' assembling 183
 1. General observation of parts 183
 2. First step: apprehension of simple attributes 184
 3. Second step: association of parts 'mechanically' 185
 4. Third step: further confirmation, clarification, and development of thought 188
 5. Fourth step 190
 (a) Active search, (b) Alternative procedures 190–192

D. The cognitive processes in 'mechanical' assembling 194
 1. Meaning of terms 194
 (a) Apprehension of experience 194
 (b) Characters 194
 (c) Eduction of relations 195
 (d) Fundaments 195
 (e) Eduction of correlates 196
 (f) Attributes 197
 (g) Reproduction 197
CONTENTS

2. The essential processes page 197
 (a) Apprehension 197
 (i) The characters apprehended 197
 (ii) Psychological conditions for their apprehension 198
 (iii) Apprehension of complex shapes 198
 (b) The fundamental questions 201
 (c) Eduction of relations between characters 204
 (i) The characters 204
 (ii) The relations 205
 (d) Functional disintegration of shape 205
 (e) Eduction of correlates 206
 (i) Correlative characters 206
 (ii) Correlative space relations 206
 (iii) Comparison with apprehension of shape 207
 (f) Reproductive processes 209
 (g) ‘Functional’ selection 209

CHAPTER XV
SUBJECTIVE ANALYSIS OF ‘ROUTINE’ ASSEMBLING

A. General description of the mental activity 210
 1. Two kinds of activity 210
 (a) Activity A—leading to knowledge of the objective spatial characters of the movements to be imparted to the material 210
 (b) Activity B—leading to knowledge concerning the way to bring about the requisite movements 212
 2. Subdivisions of Activity B 212
 (a) Knowledge of ‘signals’ 213
 (b) Knowledge of the forces to be imparted to (i) the material, (ii) the body (fingers) 214
 (c) Knowledge of the subjective characters of the appropriate efforts and movements of the body (fingers) 217
 (d) Knowledge anticipating subsequent finger movements 218
B. THE COGNITIVE PROCESSES

1. Constituting Activity A
 (a) Reproduction of the general spatial characters of the movements required
 (b) Eduction of the particular spatial characters of the movements required
 (c) Apprehension of the characters—mainly quantitative—of the movements observed

2. Constituting Activity B
 (a) Cognizing ‘signals’
 (b) Cognizing the characters of the required forces
 (c) Cognizing the characters of the bodily (finger) efforts and movements
 (i) Cognizing the mechanical arrangement of the fingers
 (ii) Cognizing the mode of activating the fingers
 (d) Cognizing ‘anticipatory’ characters

Part V. GENERAL SUMMARY

CHAPTER XVI

THE MAJOR CONCLUSIONS AND THEIR SIGNIFICANCE

A. THE ORGANIZATION OF MANUAL SKILL

1. The problem of mental organization
2. The problem of mental measurement
3. The broad ‘abilities’
4. The underlying ‘factors’
5. Saturation
6. Significance of the analysis
 (a) For psychological theory
 (b) For mental measurement
 (c) For vocational and educational guidance
xx

CONTENTS

B. THE DEVELOPMENT OF MANUAL SKILL page 238
1. The main problems 238
2. The changes in ability with practice 238
3. The transference of manual skill 239
4. The acquisition of skill 240

C. THE MENTAL PROCESSES IN MANUAL SKILL 241

INDEX 243

PLATE. (Fig. 53) facing page 208

Design by a boy aged eight years.