MAGNETISM AND ELECTRICITY
By courtesy of the Metropolitan-Vickers Electrical Co. Ltd.

A million volt power frequency arc.
MAGNETISM AND ELECTRICITY

by

A. E. E. McKenzie, M.A.

Trinity College, Cambridge

“The beauty of electricity...is not that the power is mysterious or unexpected...but that it is under law...”

MICHAEL FARADAY

CAMBRIDGE

AT THE UNIVERSITY PRESS

1952
CONTENTS

Preface ix

CHAPTER I. MAGNETISM 1
Historical—experiments with bar magnets—methods of magnetising—
theories of magnetism—modification of the molecular theory of magnetism
—magnetic induction—the magnetic field—why the lines of force of a bar
magnet have their curved shape—properties of lines of force—the effect of
unmagnetised iron in a magnetic field—the earth is a magnet.

CHAPTER II. ELECTRICITY 19
Discovery of electricity—two kinds of electricity—the flow of electricity—
conductors and insulators—the first electrosopes—the gold-leaf electroscope—testing
insulators—the charge on the rubber—electrostatic induction—fluid theories—charging by induction—explanation of the attraction
of small objects—charging an electroscope by induction—effect of an
earthed conductor on a charged electroscope—the electrophorus—the
modern era—the constitution of matter—the hydrogen atom—atoms of
the rest of the elements—electrification by rubbing—conductors and in-
sulators—Galvani and Volta—the simple cell—historical.

CHAPTER III. OHM'S LAW 38
The water analogy—the electric supply mains in a house—Ohm's law—
small and large units—measurement of resistance—resistances in series and in
parallel—proof of the formulae—Ohm's law applied to a complete circuit
—arrangement of cells.

CHAPTER IV. THE MAGNETIC EFFECT OF AN ELECTRIC CURRENT 54
Oersted's experiment—the magnetic field due to a current in a straight
wire—Maxwell's corkscrew law—the magnetic field due to a circular coil—
the solenoid—the magnetic field inside a solenoid—magnetising action of a
solenoid—the electromagnet—uses of the electromagnet—the single-
stroke signalling bell—the trembler bell—indicators—the relay—automatic
railway signalling—the full block overlap system.

CHAPTER V. ELECTRODYNAMICS 74
The force on a wire carrying a current in a magnetic field—Fleming's left-hand rule—explanation by means of lines of force—the principle of the
electric motor—the commutator—the armature—the field magnet—the
Einthoven string galvanometer—the forces between two wires carrying
currents.
Chapter VI. Galvanometers, Ammeters and Voltmeters

The first galvanometer—other moving-magnet galvanometers—the moving-coil galvanometer—the moving-iron galvanometer—the hot-wire galvanometer—the sensitivity of a galvanometer—decreasing sensitivity by means of a shunt—ammeters—voltmeters.

Chapter VII. Electrolysis

Nicholson and Carlisle and Davy—terminology—the electrolysis of a solution of hydrochloric acid—the electrolysis of copper sulphate solution—the electrolysis of acetic acid water—the electrolysis of sodium-sulphate solution—Faraday’s laws of electrolysis—the electrochemical equivalent—experimental determination of the electrochemical equivalent of copper—measuring current by means of a voltmeter—theories of electrolysis—the ionic theory—explanation of Faraday’s laws—electroplating—electrotypes—the manufacture of aluminium.

Chapter VIII. Cells

The simple voltaic cell—polarisation—local action—the Daniell cell—different metals used in cells—the Leclanché cell—the dry cell—the Gordon magnesium cell—the action inside a voltaic cell—the accumulator—charging and discharging—practical details—the drop in potential difference when a cell delivers a current—the general circuit.

Chapter IX. Measurement of Resistance and Potential Difference

Methods of measuring resistance: 1, method of substitution; 2, ammeter and voltmeter method; 3, the Wheatstone bridge—the metre bridge—locating a fault in a line—resistivity—the effect of temperature on resistance—the potentiometer—comparing the electromotive forces of two cells—the standard cell—example.

Chapter X. Electrical Energy

The work done by an electric current—power—the power in an electric lamp—buying electrical energy—the heating effect of an electric current—the work of Joule—experimental determination of the mechanical equivalent of heat—electric heating—electric lamps—fuses—the wiring of a house—the electric arc—electric welding—the electric furnace.

Chapter XI. Electromagnetic Induction

Inducing a current—the induced electromotive force and the induced current—Faraday’s theory—the strength of the induced electromotive force—the direction of the induced current—inducing a current in a coil with a bar magnet—the direction of the induced current—Lenz’s law—Fleming’s right-hand rule—mutual induction—the induction coil—slip rings or commutator—the principle of the dynamo—the way the strength of the current varies as the coil is rotated—eddy currents—Michael Faraday—Faraday’s discovery of electromagnetic induction—Faraday’s other discoveries.
CONTENTS

CHAPTER XII. DYNAMOS AND MOTORS

The reverse motor effect in a dynamo—the reverse dynamo effect of a motor—self-adjusting property of an electric motor—series and shunt-wound motors—starting resistances—the drum-wound armature—the alternating current generator—frequency—power stations.

CHAPTER XIII. THE GRID

Introductory—power transmission—advantages of alternating current over direct current—the transformer—power transformers—transformer design—the overhead lines—substations—protective gear—metering—control—three-phase alternating current—balancing—advantages of three-phase alternating current.

CHAPTER XIV. ELECTRIC TELEGRAPHY AND TELEPHONY

The first electric telegraphs in England—Samuel Morse—the Morse code—the Morse sounder—the Morse key—simple telegraph circuit—the use of the relay—duplex and multiplex telegraphy—automatic telegraphic apparatus—the Creed high-speed automatic printing telegraph—the laying of the first Atlantic cable—modern submarine cables—the siphon recorder—telephony—Bell's telephone—the microphone—the modern telephone transmitter—the Edison telephone circuit—the exchange—the automatic system.

CHAPTER XV. THE MEASUREMENT OF MAGNETISM

The inverse square law—the centimetre-gramme-second system of units—unit pole—the strength of a magnetic field—intense magnetic fields—determination of pole strength by plotting lines of force due to a single pole—determination of pole strength by plotting lines of force of a bar magnet with its N. pole pointing S.—the moment of a magnet—the principle of the deflection magnetometer—details of the instrument—use of the deflection magnetometer—the vibration magnetometer—other factors affecting the rate of vibration of a magnet—end-on position—broadside position—any position.

CHAPTER XVI. THE EARTH'S MAGNETISM

Declination—dip—the earth's field—determination of declination—determination of dip—the charting of the magnetic elements throughout the world—variation of dip over the earth's surface—variation of declination over the earth's surface—secular variations—theories of the origin of the earth's magnetism—the mariner's compass—deviations of the compass.

CHAPTER XVII. THE MEASUREMENT OF ELECTRICITY

The electromagnetic unit of current—definition—the tangent galvanometer—to check the reading of an ammeter using a tangent galvanometer—theoretical definitions of the volt and the ohm—practical standards.
CONTENTS

CHAPTER XVIII. ELECTROSTATICS page 328
Charging by rubbing—distribution of charge on conductors: (a) on surface, (b) accumulates at more curved parts—the action of points—collecting charges by points—Van de Graaff's generator—thunder and lightning—lightning conductors—how the clouds become charged—electric potential—the gold-leaf electroscope measures potential rather than charge—the effect of earthing the case of an electroscope—the potential throughout a charged conductor is uniform—the electric field—properties of lines of electric force—use of lines of force—Faraday's ice-pail experiment—capacitance or capacity—the condenser—on what does the capacitance of a condenser depend?—the Leyden jar—the identity of static and current electricity.

CHAPTER XIX. THE MODERN ERA 357
The discharge of electricity through rarefied gases—neon tubes—cathode rays—X-rays—gas tubes—the Coolidge tube—the ionisation of gases—radioactivity—the energy emitted by radium—the disintegration theory—artificial disintegration.

ANSWERS TO QUESTIONS 375

INDEX 379
PREFACE

This volume completes my series of school certificate physics text-books.

It is, like the others, a learning rather than a teaching manual—a readable book for the boy. Some historical detail has been included to give an impression of the way science grows, and to stress the cultural rather than the technical aspect of the subject.

Magnetism and electricity lends itself, perhaps more than any other branch of elementary physics, to the exposition of the role of hypothesis and theory in the progress of science: Faraday’s theory of lines of force, the molecular theory of magnetism, the two-fluid, one-fluid, and electron theories of electricity, the ionic theory, theories of terrestrial magnetism, the disintegration theory of Rutherford and Soddy—most of these have a fascinating historical background of controversy and development.

The order of presentation of the subject calls, perhaps, for brief comment. The bulk of electrostatics is postponed till a late chapter but, in the interest of logical development, enough electrostatics (as far as induction) is presented at the outset to justify the use of the terms positive and negative and to give meaning to the conception of current as a flow of electrons. Magnetometry and the tangent galvanometer are also treated near the end of the book. Ohm’s law, in view of its fundamental importance, is given at the beginning of current electricity, omitting at this stage the drop in potential difference of a cell on closed circuit.

Wireless telegraphy has been omitted, owing to the exigency of space. I have, however, devoted a chapter to signalling along wires, and another to the transmission of electricity and the Grid.

I am very much indebted to my former colleague, Mr R. E. Williams, who has read the manuscript and made numerous suggestions, and also to my pupil Mr J. W. G. Porter, who has worked out the answers to the examples.

My explanation of the action of a simple cell was suggested by Prof. W. L. Bragg’s book, Electricity.

My thanks are due to Mr B. F. Brown, who has taken for me, in the Repton laboratories, photographs of filing fields of magnets and currents, the electric arc deflected by a magnet, cathode rays casting a shadow, the Wimshurst machine, etc.
X

PREFACE

Dr R. J. Van de Graaff, of the Massachusetts Institute of Technology, kindly sent me photographs of his electrostatic generator, and the Copper Development Association obtained for me a photograph to illustrate the refining of copper from the Ontario Refining Company. Messrs Geo. Newnes, Ltd. have given me permission to reproduce certain illustrations, Figs. 54, 56, 134, 180, 287, 288 and 289, from their publication, *The Principles of Electrical Engineering*.

The following also have assisted me by providing photographs and information: Professor Carl Stermer, the General Electric Co. Ltd., the British Thomson-Houston Co. Ltd., the Metropolitan-Vickers Electrical Co. Ltd., the English Electric Co. Ltd., Messrs Ferranti Ltd., the Central Electricity Board, the Western Union Telegraph Co., the Cambridge Instrument Co. Ltd., the American Telephone and Telegraph Co., the G.P.O., Messrs Kelvin, Bottomley and Baird Ltd., the Westinghouse Brake and Saxby Signal Co. Ltd., the Igranic Electric Co. Ltd., Messrs Crompton, Parkinson Ltd., Messrs Siemens Bros. and Co. Ltd., the Royal Institution, the Science Museum, Messrs W. Canning and Co. Ltd., the London Power Co. Ltd., the Royal Meteorological Society, the Southern Railway, the Director of the National Portrait Gallery, Prof. Blackett and the Royal Society, the Editor of *The Welder*, Messrs Watson and Sons (Electrical Medical Ltd.), Messrs Williams and Wilkins Co. of Baltimore, U.S.A., the Tella Co. Ltd., and Messrs Imperial Airways.

I have taken considerable care in devising and collecting problems and questions, as I regard these as a most important feature of a science text-book. I must express my thanks to the following Examining Bodies for permission to reproduce School Certificate questions: the Oxford and Cambridge Joint Board (O. and C.), the Northern Universities Joint Matriculation Board (N.), the University of London (L.), the Cambridge Local (C.) and the Oxford Local (O.) Examination Syndicates. The letters in brackets will be found printed after the questions to designate their source.

A. E. E. M.

Repton, November 1897

In this edition the term “resistivity” is used in preference to “specific resistance”, and “oersted” instead of “gauss” as the unit of magnetic field strength.

July 1944