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Formalism of the nonlinear Schrödinger equations

Make everything as simple as possible, but not simpler.
– Albert Einstein.

Someone told me that each equation I included in the book would halve the sales.
– Stephen Hawking.

When the author was a graduate student, introductions to texts on nonlinear

evolution equations contained a long description of physical applications, numerous

references to the works of others, and sparse details of the justification of analyt-

ical results. Times have changed, however, and the main interest in the nonlinear

evolution equations has moved from modeling to analysis. It is now more typical

for applied mathematics texts to start an introduction with the main equations in

the first lines, to give no background information on applications, to reduce the list

of references to a few relevant mathematical publications, and to focus discussions

on technical aspects of analysis.

Since this book is aimed at young mathematicians, we should reduce the back-

ground information to a minimum and focus on useful analytical techniques in the

context of the nonlinear Schrödinger equation with a periodic potential. It is only

in this introduction that we recall the old times and review the list of nonlinear

evolution equations that we are going to work with in this book. The few references

will provide a quick glance at physical applications, without distracting attention

from equations.

The list of nonlinear evolution equations relevant to us begins with the nonlinear

Schrödinger equation with an external potential,

iut = −Δu + V (x)u + σ|u|2u,

where Δ = ∂2
x1

+ · · · + ∂2
xd

is the Laplacian operator in the space of d dimensions,

u(x, t) : R
d ×R → C is the amplitude function, V (x) : R

d → R is a given potential,

and σ ∈ {1,−1} is the sign for the cubic nonlinearity. If σ = −1, the nonlinear

Schrödinger equation is usually called focusing or attractive, whereas if σ = +1,

it is called defocusing or repulsive. The names differ depending on the physical

applications of the model to nonlinear optics [5], photonic crystals [192], and atomic

physics [171].

It is quite common to use the name of the Gross–Pitaevskii equation if this

equation has a nonzero potential V (x) and the name of the nonlinear Schrödinger
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2 Formalism of the nonlinear Schrödinger equations

equation if V (x) ≡ 0. Historically, this terminology is not justified as the works of

E.P. Gross and L.P. Pitaevskii contained a derivation of the same equation with

V (x) ≡ 0 as the mean-field model for superfluids [83] and Bose gas [170]. However,

given the number of physical applications of this equation with V (x) ≡ 0 in nonlin-

ear optics, photonic crystals, plasma physics, and water waves, we shall obey this

historical twist in terminology and keep reference to the Gross–Pitaevskii equation

if V (x) is nonzero and to the nonlinear Schrödinger equation if V (x) is identically

zero.

Several recent books [2, 30, 133, 199, 201] have been devoted to the nonlinear

Schrödinger equation and we shall refer readers to these books for useful information

on mathematical properties and physical applications of this equation. As a main

difference, this book is devoted to the Gross–Pitaevskii equation with a periodic

potential V (x).

We shall study localized modes of the Gross–Pitaevskii equation with the periodic

potential. These localized modes are also referred to as the gap solitons or discrete

breathers because they are given by time-periodic and space-decaying solutions of

the Gross–Pitaevskii equation. In many of our studies, we shall deal with localized

modes in one spatial dimension. Readers interested in analysis of vortices in the two-

dimensional Gross–Pitaevskii equation with a harmonic potential may be interested

to read the recent book of Aftalion [3].

Many other nonlinear evolution equations with similar properties actually arise

as asymptotic reductions of the Gross–Pitaevskii equation with a periodic potential,

while they merit independent mathematical analysis and have independent phys-

ical relevance. One such model is a system of two coupled nonlinear Schrödinger

equations,
{

iut = −Δu + σ
(

|u|2 + β|v|2
)

u,

ivt = −αΔv + σ
(

β|u|2 + |v|2
)

v,

where α and β are real parameters, σ ∈ {1,−1}, and (u, v)(x, t) : R
d×R → C

2 stand

for two independent amplitude functions. The number of amplitude functions in the

coupled nonlinear Schrödinger equations can exceed two in various physical prob-

lems. However, two is a good number both from the increased complexity of math-

ematical analysis compared to the scalar case and from the robustness of the model

to the description of practical problems. For instance, two polarization modes in a

birefringent fiber are governed by the system of two coupled nonlinear Schrödinger

equations and so are the two resonant Bloch modes at the band edge of the photonic

spectrum [7].

When the coupled equations for two resonant modes in a periodic potential are

derived in the space of one dimension (d = 1), the group velocities of the two

modes are opposite to each other and the coupling between the two modes in-

volves linear terms. In this case, the system takes the form of the nonlinear Dirac

equations,
{

i(ut + ux) = αv + σ
(

|u|2 + β|v|2
)

u,

i(vt − vx) = αu + σ
(

β|u|2 + |v|2
)

v,
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1.1 Asymptotic multi-scale expansion methods 3

where α and β are real parameters, σ ∈ {1,−1}, and (u, v)(x, t) : R × R → C
2 are

the amplitude functions for two resonant modes. Two counter-propagating waves

coupled by the Bragg resonance in an optical grating is one of the possible applica-

tions of the nonlinear Dirac equations [197]. We recall from quantum mechanics that

the Dirac equations represent the relativistic theory compared to the Schrödinger

equations that represent the classical theory.

The list of nonlinear evolution equations for this book ends at the spatial dis-

cretization of the nonlinear Schrödinger equation, which is referred to as the dis-

crete nonlinear Schrödinger equation. This equation represents a system of infinitely

many coupled differential equations on a lattice,

iu̇n = −(Δu)n + σ|un|
2un,

where (Δu)n is the discrete Laplacian operator on the d-dimensional lattice, σ ∈

{1,−1}, and {un(t)} : Z
d × R → C is an infinite set of amplitude functions. The

discrete nonlinear Schrödinger equation arises in the context of photonic crystal

lattices, Bose–Einstein condensates in optical lattices, Josephson-junction ladders,

and the DNA double strand models [110].

Modifications of the nonlinear evolution equations in the aforementioned list with

a more general structure, e.g. with additional linear terms and non-cubic nonlin-

ear functions, are straightforward and we adopt these modifications throughout

the book if necessary. It is perhaps more informative to mention other nonlinear

evolution equations, which are close relatives to the nonlinear Schrödinger equa-

tion. Among them, we recall the Klein–Gordon, Boussinesq, and other nonlinear

dispersive wave equations. In the unidirectional approximation, many nonlinear dis-

persive wave equations reduce to the Korteweg–de Vries equation. It would take too

long, however, to list all other nonlinear evolution equations, their modifications,

and the relationships between them, hence we should stop here and move to the

mathematical analysis of the Gross–Pitaevskii equation with a periodic potential.

For the sake of clarity, we work with the simplest mathematical models keeping in

mind that the application-motivated research in physics leads to more complicated

versions of these governing equations.

1.1 Asymptotic multi-scale expansion methods

Our task is to show how the Gross–Pitaevskii equation with a periodic potential can

be approximated by the simpler nonlinear evolution equations listed in the begin-

ning of this chapter. To be able to perform such approximations, we shall consider

a powerful technique known as the asymptotic multi-scale expansion method. This

method is applied in a certain asymptotic limit after all important terms of the

primary equations are brought to the same order, while all remaining terms are

removed from the leading order.

The above strategy does not sound like a rigorous mathematical technique. If

power expansions in terms of a small parameter are developed, only a few terms
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4 Formalism of the nonlinear Schrödinger equations

are actually computed in the asymptotic multi-scale expansion method, while the

remaining terms are cut down in the hope that they are small in some sense. In the

time evolution of a hyperbolic system with energy conservation, it is not unusual

to bound the remaining terms at least for a finite time (Sections 2.2–2.4). In the

time evolution of a parabolic system with energy dissipation, the theory of invariant

manifolds and normal forms is often invoked to obtain global results for all positive

times, as we shall see in the same sections in the context of a time-independent

elliptic system (which is a degenerate case of a parabolic system).

It is still true that a formal approximation of the asymptotic multi-scale expansion

method is half way to the rigorous analysis of the asymptotic reduction. Another

way to say this: if you do not know how to solve a problem rigorously, first solve it

formally! In many cases, the formal solution may suggest ways to rigorous analysis.

The above slogan explains why, even being unable to analyze asymptotic approx-

imations thirty or even twenty years ago, applied mathematicians tried nevertheless

to formalize the asymptotic multi-scale expansion method in many details to avoid

misleading computations and failures. The method has been described in several

books [143, 199] and the number of original publications in the context of physically

relevant equations is truly uncountable!

We shall look at the three different asymptotic limits separately for the reduc-

tions of the Gross–Pitaevskii equation with a periodic potential to the nonlinear

Dirac equations, the nonlinear Schrödinger equation, and the discrete nonlinear

Schrödinger equation. Our approach is based on the classical asymptotic multi-scale

expansion method, which has been applied to these three asymptotic reductions in

the past [152].

The starting point for our asymptotic analysis is the Gross–Pitaevskii equation

in one spatial dimension,

iut = −uxx + V (x)u + σ|u|2u, (1.1.1)

where u(x, t) : R × R → C, σ ∈ {1,−1}, and V (x + 2π) = V (x) is a bounded

2π-periodic potential.

Three different asymptotic limits represent different interplays between the

strength of the periodic potential V (x) and the strength of the nonlinear poten-

tial σ|u|2 affecting existence of localized modes in the Gross–Pitaevskii equation

(1.1.1). These asymptotic limits are developed for small-amplitude potentials (Sec-

tion 1.1.1), finite-amplitude potentials (Section 1.1.2), and large-amplitude poten-

tials (Section 1.1.3). In each case, we derive the leading-order asymptotic reduction

that belongs to the list of nonlinear evolution equations in the beginning of this

chapter.

1.1.1 The nonlinear Dirac equations

In the limit of small-amplitude periodic potentials, the Gross–Pitaevskii equation

(1.1.1) can be rewritten in the explicit form,

iut = −uxx + ǫV (x)u + σ|u|2u, (1.1.2)
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1.1 Asymptotic multi-scale expansion methods 5

where ǫ is a small parameter. If the nonlinear term σ|u|2u is crossed over and ǫ is

set to 0, equation (1.1.2) becomes the linear Schrödinger equation

iut = −uxx, (1.1.3)

which is solved by the Fourier transform as

u(x, t) =

∫

R

a(k)eikx−iω(k)tdk,

where ω(k) = k2 is the dispersion relation for linear waves and a(k) : R → C is

an arbitrary function, which is uniquely specified by the initial condition u(x, 0).

Since V (x + 2π) = V (x) for all x ∈ R, we can represent V (x) by the Fourier

series

V (x) =
∑

m∈Z

Vmeimx.

For any fixed k ∈ R, the Fourier mode eikx−iω(k)t in u(x, t) generates infinitely many

Fourier modes in the term ǫV (x)u(x, t) at the Fourier wave numbers km = k + m

for all m ∈ Z. These Fourier modes are said to be in resonance with the primary

Fourier mode eikx−iω(k)t if

ω(km) = ω(k), m ∈ Z,

which gives us an algebraic equation m(m + 2k) = 0, m ∈ Z. Thus, if 2k is not an

integer, none of the Fourier modes with m �= 0 are in resonance with the primary

Fourier mode, while if 2k = n for a fixed n ∈ N, the Fourier mode with m = −n is

in resonance with the primary mode with m = 0. In terms of the Fourier harmonics,

the two resonant modes have k = n
2 and k−n = k − n = −n

2 .

In the asymptotic method, we shall zoom in the two resonant modes at k = n
2

and k−n = −n
2 by a scaling transformation and obtain a system of nonlinear

evolution equations for mode amplitudes by bringing all important terms to the

same first order in ǫ, where the resonance is found. The important terms to be

included in the leading order are related to the nonlinearity, dispersion, and inter-

action of the resonant modes, as well as to their time evolution. To incorporate

all these effects, we shall look for an asymptotic multi-scale expansion in powers

of ǫ,

u(x, t) = ǫp
[(

a(X,T )e
inx

2 + b(X,T )e−
inx

2

)

e−
in2

t

4 + ǫu1(x, t) + O(ǫ2)
]

, (1.1.4)

where X = ǫqx, T = ǫrt, (p, q, r) are some parameters to be determined, n ∈ N is

fixed, (a, b)(X,T ) : R×R → C
2 are some amplitudes to be determined, ǫu1(x, t) is a

first-order remainder term, and O(ǫ2) indicates a formal order of truncation of the

asymptotic expansion. When the asymptotic expansion (1.1.4) is substituted into

the Gross–Pitaevskii equation (1.1.2), the exponents are chosen from the condition

that terms coming from derivatives of (a, b) in (X,T ) and terms coming from powers

of (a, b) enter the same order of the asymptotic expansion. This procedure sets

uniquely p = 1
2 and q = r = 1.
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6 Formalism of the nonlinear Schrödinger equations

The simple choice of the exponents (p, q, r) may fail to bring all terms to the

same order. For instance, coefficients in front of the first derivatives of (a, b) or the

powers of (a, b) can be zero for some problems. Such failures typically indicate that

(p, q, r) must be chosen smaller so that the coefficients in front of the higher-order

derivatives of (a, b) or the higher-order powers of (a, b) are nonzero. Therefore, sim-

ilarly to the technique of integration, the asymptotic multi-scale expansion method

is a laboratory, in which a researcher plays an active role by employing the strategy

of trials and errors until he or she manages to bring all important terms to the

same order.

Setting p = 1
2 , q = r = 1 and truncating the terms of the order of O(ǫ2), we write

a linear inhomogeneous equation for u1(x, t),

(

i∂t + ∂2
x

)

u1 = −i(aTe+ + bT e−) − in(aXe+ − bXe−)

+V (ae+ + be−) + σ |ae+ + be−|
2
(ae+ + be−), (1.1.5)

where e± ≡ e±
in
2
x− in2

4
t satisfy the linear Schrödinger equation (1.1.3). If terms

proportional to either e+ or e− occur on the right-hand side of the linear in-

homogeneous equation (1.1.5), the solution u1(x, t) becomes unbounded in vari-

ables (x, t), e.g. u1(x, t) ∼ te±. Since secular growth is undesired as it destroys

the applicability of the asymptotic solution (1.1.4) already at the first order in

ǫ, one needs to eliminate the resonant terms on the right-hand side of (1.1.5).

This is possible if the amplitudes (a, b) satisfy the system of first-order semi-linear

equations,

{

i(aT + naX) = V0a + Vnb + σ(|a|2 + 2|b|2)a,

i(bT − nbX) = V−na + V0b + σ(2|a|2 + |b|2)b,
(1.1.6)

where V0, Vn, and V−n are coefficients of the Fourier series for V (x). The amplitude

equations (1.1.6) are nothing but the nonlinear Dirac equations.

Because the linear Schrödinger equation (1.1.3) is dispersive with ω′′(k) = 2 �=

0, the other Fourier modes on the right-hand side of (1.1.5) which are differ-

ent from e± do not produce a secular growth of u1(x, t). Therefore, the system

(1.1.6) gives the necessary and sufficient condition that u1(x, t) is bounded for all

(x, t) ∈ R
2. Indeed, we can find the explicit bounded solution of the inhomogeneous

equation (1.1.5),

u1(x, t) = −
∑

m/∈{−n,0}

Vma

m(m + n)
ei(m+n

2 )x− in2
t

4 −
∑

m/∈{0,n}

Vmb

m(m− n)
ei(m−n

2 )x− in2
t

4

−
1

2n2

(

a2b̄e
3inx

2 + b2āe−
3inx

2

)

e−
in2

t

4 .

This expression suggests that the asymptotic solution (1.1.4) to the original equa-

tion (1.1.2) may be factored by e−
in2

t

4 . After the bounded solution is found for the

first-order remainder term, one can continue the formal asymptotic solution (1.1.4)

to the next order of O(ǫ2).
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1.1 Asymptotic multi-scale expansion methods 7
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Figure 1.1 Schematic representation of the leading order in the asymptotic solu-
tion (1.1.4).

In view of so many restrictive assumptions and so many truncations made in the

previous computations, it might be surprising to know that the nonlinear Dirac

equations can be rigorously justified for small-amplitude periodic potentials (Sec-

tion 2.2). Stationary localized modes to the nonlinear Dirac equations (1.1.6) can

be constructed in explicit form (Section 3.3.4).

Figure 1.1 shows the leading order of the asymptotic solution (1.1.4) with p = 1
2

and q = r = 1, when (a, b) is the stationary localized mode of the nonlinear Dirac

equations (1.1.6) for V (x) = −2 cos(x), σ = −1, n = 1, and ǫ = 0.1.

Exercise 1.1 Consider the nonlinear Klein–Gordon equation,

utt − uxx + u + σu3 + ǫV (x)u = 0,

where u(x, t) : R × R → R, σ ∈ {1,−1}, and V (x + 2π) = V (x) is bounded, and

derive the nonlinear Dirac equations in the asymptotic limit ǫ → 0.

Exercise 1.2 Consider the nonlinear wave–Maxwell equation,

Exx −
(

1 + ǫV (x) + σ|E|2
)

Ett = 0,

where E(x, t) : R × R → C, σ ∈ {1,−1}, and V (x + 2π) = V (x) is bounded, and

derive the nonlinear Dirac equations in the asymptotic limit ǫ → 0. Show that the

first-order correction is not a bounded function for all (x, t) ∈ R
2 because the linear

wave equation Exx − Ett = 0 has no dispersion and infinitely many Fourier modes

are in resonance with the primary Fourier mode.

Exercise 1.3 Consider the Gross–Pitaevskii equation with periodic coefficients,

iut = −uxx + ǫV (x)u + G(x)|u|2u,
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8 Formalism of the nonlinear Schrödinger equations

where u(x, t) : R×R → C, V (x+ 2π) = V (x) and G(x+ 2π) = G(x) are bounded,

and derive an extended system of nonlinear Dirac equations in the asymptotic limit

ǫ → 0.

Exercise 1.4 Repeat Exercise 1.3 with even V (x) and odd G(x) and derive the

nonlinear Dirac equations with quintic nonlinear terms.

1.1.2 The nonlinear Schrödinger equation

We shall now assume that the 2π-periodic potential V (x) is bounded but make no

additional assumptions on the amplitude of V (x). Let us rewrite again the Gross–

Pitaevskii equation (1.1.1) in the explicit form,

iut = −uxx + V (x)u + σ|u|2u. (1.1.7)

If the nonlinear term σ|u|2u is crossed over, equation (1.1.7) becomes a linear

Schrödinger equation with a periodic potential

iut = −uxx + V (x)u. (1.1.8)

The linear modes are now given by the quasi-periodic Bloch waves in the form

u(x, t) = ψk(x)e−iω(k)t,

where ψk(x) is a solution of the boundary-value problem for the second-order dif-

ferential equation
{

−ψ′′
k (x) + V (x)ψk(x) = ω(k)ψk(x),

ψk(x + 2π) = e2πikψk(x),
x ∈ R.

Here k is real and ω(k) is to be determined (Section 2.1.2).

The asymptotic multi-scale expansion method is now developed in a neighbor-

hood of a particular linear Bloch wave for a given value (k0, ω0), where ω0 = ω(k0).

Guided by the asymptotic method from Section 1.1.1, we shall try again the asymp-

totic multi-scale expansion in powers of ǫ,

u(x, t) = ǫp
[

a(X,T )ψk0
(x)e−iω0t + ǫu1(x, t) + O(ǫ2)

]

, (1.1.9)

where X = ǫqx, T = ǫrt, (p, q, r) are some parameters to be determined, a(X,T ) :

R × R → C is an envelope amplitude to be determined, ǫu1(x, t) is a first-order

remainder term, and O(ǫ2) is a formal order of truncation of the asymptotic ex-

pansion.

When the asymptotic expansion (1.1.9) is substituted into the Gross–Pitaevskii

equation (1.1.7), we can set the exponents as p = 1
2 and q = r = 1, similarly to the

previous section. We will see however that this choice is not appropriate and the

values for the exponents (p, q, r) will have to be changed.

Setting the exponents p = 1
2 , q = r = 1 and truncating the terms of the order of

O(ǫ2), we write a linear inhomogeneous equation for u1(x, t),
(

i∂t + ∂2
x − V

)

u1 =
(

−iaTψk0
− 2aXψ′

k0
+ σ|a|2a|ψk0

|2ψk0

)

e−iω0t. (1.1.10)
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1.1 Asymptotic multi-scale expansion methods 9

The right-hand side of (1.1.10) produces a secular growth of u1(x, t) in variables

(x, t) because ψk0
(x)e−iω0t is a solution of the homogeneous equation (1.1.8). Look-

ing for a solution in the form u1(x, t) = w1(x)e−iω0t, we obtain an ordinary differ-

ential equation on w1(x),
(

−∂2
x + V + ω0

)

w1 = iaTψk0
+ 2aXψ′

k0
− σ|a|2a|ψk0

|2ψk0
. (1.1.11)

Multiplying the left-hand side of (1.1.11) by ψ̄k0
and integrating on [0, 2π] we note

that if w1(x) belongs to the same class of functions as ψk0
(x), then

∫ 2π

0

ψ̄k0

(

−∂2
x + V + ω0

)

w1dx = −
(

ψ̄k0
w′

1 − ψ̄′
k0
w1

)

∣

∣

∣

∣

x=2π

x=0

= 0.

Multiplying now the right-hand side of (1.1.11) by ψ̄k0
and integrating on [0, 2π],

we obtain a nonlinear evolution equation on the amplitude a(X,T ),

iaT = −
2〈ψ′

k0
, ψk0

〉L2
per

‖ψk0
‖2
L2

per

aX + σ
‖ψk0

‖4
L4

per

‖ψk0
‖2
L2

per

|a|2a. (1.1.12)

If the nonlinear evolution equation (1.1.12) is violated, then either w1(x) becomes

unbounded on R because of a linear growth as |x| → ∞ or u1(x, t) grows secularly

in time t as t → ∞.

Equation (1.1.12) is a scalar semi-linear hyperbolic equation, which is easily solv-

able. Because of the periodic boundary conditions of |ψk0
(x)|2 on [0, 2π], the co-

efficient 〈ψ′
k0
, ψk0

〉L2
per

is purely imaginary, so that the X-derivative term can be

removed by the transformation a(X,T ) = a(X − cgT, T ), where

cg =
2〈ψ′

k0
, ψk0

〉L2
per

i‖ψk0
‖2
L2

per

∈ R

has the meaning of the group velocity of the Bloch wave u(x, t) = ψk0
(x)e−iω0t.

After the transformation, the nonlinear evolution equation on a(X − cgT, T ) does

not have X-derivative terms and can be immediately integrated.

Exercise 1.5 Find the most general solution of the amplitude equation (1.1.12).

The amplitude equation (1.1.12) does not capture effects of dispersion of the

Bloch wave at the same order where the effects of nonlinearity, time evolution,

and group velocity occur. This outcome of the asymptotic multi-scale expansion

method indicates that the leading-order balance misses an important contribution

from the wave dispersion which is modeled by the second-order X-derivative terms

on a(X,T ). Therefore, we have to revise the exponents (p, q, r) of the asymptotic

expansion in order to bring all important effects to the same order.

Let us keep the exponent q = 1 in the scaling of X = ǫqx for convenience.

Since the linear second-order derivative terms are of the order ǫ2+p, while the cubic

nonlinear terms are of the order ǫ3p, a non-trivial balance occurs if p = 1. The time

evolution is of the order ǫq+p and it matches the balance if q = 2. In addition, we

need to remove the group-velocity term by the transformation

a(X,T ) → a(X − cgT, T ).
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10 Formalism of the nonlinear Schrödinger equations

Combining all at once, we revise the asymptotic expansion (1.1.9) as

u(x, t) = ǫ
[

a(X − cgT, τ)ψk0
(x)e−iω0t + ǫu1(x, t) + ǫ2u2(x, t) + O(ǫ3)

]

, (1.1.13)

where T = ǫt, τ = ǫ2t, and O(ǫ3) indicates a new order of truncation of the asymp-

totic expansion. When the asymptotic multi-scale expansion (1.1.13) is substituted

into the Gross–Pitaevskii equation (1.1.7), we obtain the first-order correction term

in the explicit form

u1(x, t) = ϕ1(x)aX(X − cgT, τ)e−iω0t,

where ϕ1(x) solves

(

−∂2
x + V + ω0

)

ϕ1 = −icgψk0
+ 2ψ′

k0
.

Note that the choice of cg provides a sufficient condition that ϕ1(x) belongs to the

same class of functions as ψk0
(x). The second-order remainder term u2(x, t) satisfies

now the linear inhomogeneous equation

(

i∂t + ∂2
x − V

)

u2 =
(

−iaτψk0
+ (icgϕ1 − 2ϕ′

1 − ψk0
)aXX + σ|a|2a|ψk0

|2ψk0

)

e−iω0t.

Looking for a solution in the form u2(x, t) = w2(x)e−iω0t, we obtain an ordinary

differential equation on w2(x):

(

−∂2
x + V + ω0

)

w2 = iaτψk0
− (icgϕ1 − 2ϕ′

1 − ψk0
)aXX − σ|a|2a|ψk0

|2ψk0
.

Using the same projection algorithm as for equation (1.1.11), we obtain a nonlinear

evolution equation on the amplitude a(X − cgT, τ),

iaT = αaXX + σβ|a|2a, (1.1.14)

where

α =
icg〈ϕ1, ψk0

〉L2
per

− 2〈ϕ′
1, ψk0

〉L2
per

‖ψk0
‖2
L2

per

− 1, β =
‖ψk0

‖4
L4

per

‖ψk0
‖2
L2

per

.

The amplitude equation (1.1.14) is nothing but the nonlinear Schrödinger (NLS)

equation. The asymptotic reduction to the NLS equation is rigorously justified

(Section 2.3). The stationary localized mode of the NLS equation (1.1.14) exists in

explicit form (Section 1.4.1).

Figure 1.2 shows the leading order of the asymptotic solution (1.1.13), when

a is the stationary localized mode of the nonlinear Schrödinger equation (1.1.14)

for V (x) = 0.2(1 − cos(x)), σ = −1, k0 = 0, and ǫ = 0.1. The localized mode

corresponds to the lowest Bloch wave.

Exercise 1.6 Consider the nonlinear Klein–Gordon equation,

utt − uxx + u + σu3 + V (x)u = 0,

where u(x, t) : R × R → R, σ ∈ {1,−1}, and V (x + 2π) = V (x) is bounded,

and derive the cubic nonlinear Schrödinger equation for a Bloch wave u(x, t) =

ψk0
(x)e−iω0t.
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