The BMT Data Book

Including Cellular Therapy

Third edition
The BMT Data Book
Including Cellular Therapy

Third edition

Edited by:

Reinhold Munker, MD
Associate Professor of Medicine, Department of Medicine, Division of Hematology, Louisiana State University, Shreveport, LA, USA

Gerhard C. Hildebrandt, MD
Associate Professor of Medicine, University of Utah School of Medicine, Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, Salt Lake City, UT, USA

Hillard M. Lazarus, MD, FACP
Professor of Medicine, Case Western Reserve University, The George and Edith Richman Professor and Distinguished Scientist in Cancer Research, University Hospitals Case Medical Center, Cleveland, OH, USA

Kerry Atkinson, MD, FRCP, FRACP
Professor of Medicine, Division of Hematology – Oncology, University of Queensland, South Brisbane, Australia; Head, Stem Cell Biology, Regenerative Medicine, and Novel Therapeutic Anti-Cancer Agents Group, Mater Medical Research Institute, Queensland, Australia
A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
p. ; cm.
Includes bibliographical references and index.
1. Munker, Reinhold.
 617.4'40592-.dc23
2012029267

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.
Contents

List of contributors viii
Foreword x
Preface xi
Acknowledgments xiii

Section 1 – Basic science

1 Hematopoietic cell transplantation: past, present, and future 1
Reinhold Munker

2 Basic science 7
Reinhold Munker and Kerry Atkinson

Section 2 – Hematologic malignancies

3 Therapeutic decision making in BMT/SCT for acute myeloid leukemia 25
Reinhold Munker, Gerhard C. Hildebrandt, and Kerry Atkinson

4 Therapeutic decision making in BMT/SCT for acute lymphoblastic leukemia 41
Reinhold Munker, Vishwas Sakhalkar, Hillard M. Lazarus, and Kerry Atkinson

5 Therapeutic decision making in BMT/SCT for chronic myeloid leukemia and other myeloproliferative syndromes 56
Reinhold Munker, Hillard M. Lazarus, and Kerry Atkinson

6 Therapeutic decision making in BMT/SCT for chronic lymphatic leukemia 67
Nebu V. Koshy, Reinhold Munker, Hillard M. Lazarus, and Kerry Atkinson

7 Therapeutic decision making in BMT/SCT for myelodysplasia 77
Carolina Escobar, Reinhold Munker, and Kerry Atkinson

8 Hematopoietic cell transplantation for non-Hodgkin lymphoma 90
Saurabh Chhabra and Ginna G. Laport

9 Therapeutic decision making in BMT/SCT for Hodgkin lymphoma 113
Reinhold Munker, Hillard M. Lazarus, and Kerry Atkinson

10 Therapeutic decision making in hematopoietic SCT for multiple myeloma 122
Reinhold Munker, Hillard M. Lazarus, and Kerry Atkinson

11 Therapeutic decision making in SCT for amyloidosis 133
Reinhold Munker, Hillard M. Lazarus, and Kerry Atkinson

Section 3 – Solid tumors

12 Therapeutic decision making in BMT/SCT for nonseminomatous germ cell tumor of testis 139
Reinhold Munker, Hillard M. Lazarus, and Kerry Atkinson

13 Therapeutic decision making in BMT/SCT for renal cell cancer 146
Richard W. Childs and Reinhold Munker
Section 8 – The BMT/SCT pharmacopoeia

27 The BMT/SCT pharmacopoeia 411
 Jill M. Comeau, Reinhold Munker, and Kerry Atkinson

Section 9 – HLA-testing and laboratory medicine

28 HLA-testing and laboratory medicine 509
 Nicholas R. DiPaola, Reinhold Munker, and Kerry Atkinson

Appendix: Guide to the internet and literature databases relevant for BMT/SCT 525

Index 529
Contributors

Klemens Angstwurm, MD
Associate Professor of Neurology,
University of Regensburg, Bezirksklinikum,
Regensburg, Germany

Kerry Atkinson, MD, FRCP, FRACP
Professor of Medicine, University of
Queensland, South Brisbane, Australia

Nicholas Barber, MD
Oncology Fellow, University of Nebraska
Medical Center, Omaha, NE, USA

Jaap J. Boelens, MD
Associate Professor of Pediatrics,
University Medical Center, Utrecht,
the Netherlands

Saurabh Chhabra, MD
Assistant Professor of Medicine, University
of South Carolina, Charleston, SC, USA

Richard W. Childs, MD
Senior Investigator, Hematology Branch,
National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda,
MD, USA

Jill M. Comeau, PharmD, BCOP
Assistant Professor of Hematology/Oncology,
University of Louisiana at Monroe, College of Pharmacy,
Monroe, LA; Gratis Assistant Professor of Medicine, Louisiana State University,
Shreveport, LA, USA

Daniel R. Couriel, MD
Director, Adult Blood and Marrow
Transplant Program, University of
Michigan, Ann Arbor, MI, USA

Tina Dietrich-Ntoukas, MD
Associate Professor of Ophthalmology,
University of Regensburg, Regensburg,
Germany

Nicholas R. DiPaola, PhD
Ohio State University Medical Center,
Columbus, OH, USA

Ulrich Duffner, MD
Director, Blood and Bone Marrow
Transplant Program, Michigan State
University, Grand Rapids, MI, USA

Carolina Escobar, MD
Assistant Professor of Medicine, Baylor
University Blood and Marrow Transplant
Program, Dallas, TX, USA

Alison G. Freifeld, MD
Professor of Medicine, University of
Nebraska Medical Center, Omaha,
NE, USA

Gerhard C. Hildebrandt, MD
Associate Professor of Medicine, University of
Utah School of Medicine, and Huntsman
Cancer Institute, Salt Lake City, UT, USA

Hans-Jochem Kolb, MD
Professor of Medicine and Senior
Consultant, Klinikum Rechts der Isar,
Munich, Germany

Nebu V. Koshy, MD
Assistant Professor of Medicine, Louisiana
State University, Shreveport, LA, USA

Ginna G. Laport, MD
Associate Professor, Stanford University,
Blood and Marrow Transplantation,
Stanford, CA, USA
Mary J. Laughlin, MD
Professor of Medicine, University of Virginia, Section Head for Stem Cell Transplantation, Charlottesville, VA, USA

Hillard M. Lazarus, MD, FACP
Professor of Medicine, The George and Edith Richman Professor and Distinguished Scientist in Cancer Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA

Anna Locasciulli, MD
Professor of Pediatrics, Ospedale S. Camillo-Forlanini, Rome, Italy

Reinhold Munker, MD
Associate Professor of Medicine, Louisiana State University, Shreveport, LA, USA

Binu Nair, MD
Assistant Professor of Medicine, Louisiana State University, Shreveport, LA, USA

Pavan Reddy, MD
Associate Professor of Medicine, University of Michigan, Ann Arbor, MI, USA

Muhammad A. Saif, MD
Clinical Fellow, University of Manchester, Manchester, UK

Vishwas Sakhalkar, MD
Director, Pediatric Hematology/Oncology, Medical Center of Central Georgia, Macon, GA, USA

Shalini Shenoy, MD
Associate Professor of Pediatrics, Washington University, St. Louis, MO, USA

Michael Stadler, MD, PhD
Attending Physician, Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany

Amanda Sun, MD, PhD
Chief of Hematology/Oncology, Group Health Physicians, Tacoma, WA, USA

Daniel Wolff, MD
Professor of Medicine, University of Regensburg, Regensburg, Germany

Robert F. Wynn, MD
Director of Blood and Marrow Transplant, University of Manchester, Manchester, UK
Foreword

It is over 50 years since the basic concepts underpinning bone marrow transplantation were revealed in radiation protection experiments in mice. It seems curious now that in the 1950s the idea that marrow cells could grow and reconstitute hematopoiesis in an irradiated recipient was so revolutionary that it took a series of critical experiments to prove the “cellular theory” and disprove the “humoral theory” of radiation protection. Equally remarkable is the fact that within a few years (and at a time when our knowledge of lymphocytes was sketchy) the unique allotransplant-associated phenomena of graft-versus-host disease, graft rejection, and graft-versus-leukemia effects were teased out, paving the way for human transplant studies in the 1960s.

Fast forward to today, bone marrow transplantation has become stem cell transplantation (SCT), incorporating the use of umbilical cord and peripheral blood as stem cell sources. The complexity of the field has increased exponentially as transplant biology is defined increasingly at the molecular level. SCT or HCT (hematopoietic cell transplantation) is continually being extended to new malignant and nonmalignant diseases and is increasingly used because more unrelated donors and cord blood donations are available, and mismatched transplants can be performed more safely. Currently, over 25 000 SCTs are performed annually in over 70 countries. As confidence to deliver transplants with low mortality has grown, SCTs are being applied increasingly to older patients. Luckily, expertise in the clinical transplant community has kept pace with this expansion. There has been an overall increase in transplant “know how” and many procedures and approaches are standardized worldwide. To maintain our standards of care at the cutting edge, clinicians need a reference volume for the many algorithms of treatment we now handle in treating our patients. The editors of The BMT Data Book, Drs Munker, Hildebrandt, Lazarus, and Atkinson, have striven to produce a book that fulfills the stem cell transplanter’s need for a practical guide and data source. Particularly, attention has been given to the practical issues of who should have a transplant and what type of transplant approach should be chosen.

However, no medical discipline can afford to stand still and textbooks must also move with advances or perish. SCT is no exception—in fact, there is a sense that the pace of development, both in new concepts and new clinical practice, has quickened in the last decade. In particular, improvements in transplant and nontransplant approaches, which are never in step with each other, have altered the indications for transplant. There has been ever-increasing use and success of umbilical cord blood transplantation and the emergence of safer regimens for haploidentical transplants. Progress has also been made in cell therapy with the use of mesenchymal stromal cells and regulatory T-cells to treat graft-versus-host disease and antigen-specific T-cell lines to treat viral infections. The third edition of this volume, therefore, is both timely and necessary. The editors have excelled in updating the indications for transplantation and incorporating the newest developments into this completely updated book.

So let us welcome this new edition of The BMT Data Book Including Cellular Therapy. It will continue to serve the stem cell transplantation community well and will play its part in the constant honing of our clinical practice so as to deliver the best and most advanced care to our patients.

John Barrett
Bethesda, MD
Preface

The last 15 years have seen a major change, expansion, and improvement in the discipline of clinical bone marrow and blood stem cell transplantation. Unifying bone marrow and peripheral blood stem cell transplants, the term hematopoietic cell transplantation has been proposed. New data have become available to support the decision for or against transplantation. The future has started already. Basic science has made progress: new genes and microRNAs have been characterized as risk factors in the outcomes of hematologic malignancies. The involvement of natural killer cells in the graft-versus-tumor reactions has been recognized. New cell populations like dendritic cells and mesenchymal stem cells have been characterized. Clinical science has made progress. New indications for transplants have been developed and evaluated. Examples are renal cell cancer, autoimmune disorders, and amyloidosis. New stem cell sources (e.g., from cord blood) were implemented. Owing to sophisticated typing methods, unrelated transplants have become safer. Because of increased donor numbers, matched unrelated transplants can now be offered to more than 70% of patients who do not have a family match. Old indications (breast cancer) have become obsolete or are being reevaluated (chronic myelogenous leukemia) because of advances in the nontransplant arena. In the first edition of this book, transplant for multiple myeloma was put into context against “conventional” treatments. Now, autologous transplant has become the standard of care for multiple myeloma, which has to compete and will join forces with antiangiogenic agents or proteasome inhibitors. New treatment protocols for older patients or those who have significant comorbidities were introduced (reduced-intensity conditioning).

Overall, in the United States more than 17,000, in Europe more than 30,000, and in Australia 1200 hematopoietic stem cell transplants are being performed each year. In addition to Europe and North America, South America, Mexico, China, and India have all started active transplant programs. The registry data evaluating the outcomes of autologous and allogeneic transplants now are based on thousands of patients instead of hundreds of patients. Therefore, in many instances, the promise of cure is being replaced or is supported by realistic long-term survival data.

Reacting to these many new developments, we decided to publish a third edition of The BMT Data Book. The basic structure is conserved. In the first section, the global trends in hematopoietic cell transplantation, the biology of stem cells, and the science underlying transplantation are discussed. Next, the indications for transplant in different diseases (malignant and non-malignant) are given. Pediatric aspects are noted when indicated. In a new chapter, pediatric neurologic and metabolic disorders treated with transplant are discussed. We review in detail the established and novel cellular therapies. Coauthors specialized in different areas have made contributions. All chapters are concise. The nontransplant options are mentioned briefly. Registry data are given when available. As in the first two editions, major articles from respected journals were chosen for each topic and with the permission of the authors, some figures were reproduced. These articles not only support our recommendations but also illustrate current controversies. In the other two major sections, the practical aspects and the complications of allogeneic and autologous transplantation are discussed. The “BMT pharmacopoeia” is updated with many new drugs, whereas standard-dose protocols (available in other textbooks) were removed. Finally,
current transplant protocols and certain aspects of laboratory medicine are included. As in
the second edition, *The BMT Data Book* has a guide to the internet and printed databases.
This book is a work in progress. Owing to the enormous amount of literature and infor-
mation available, it cannot be 100% complete or free from errors. However, we hope, by
providing recent and solid data, to help the physicians and patients to make informed
decisions and choose the best individual treatment.

Reinhold Munker
Gerhard C. Hildebrandt
Hillard M. Lazarus
Kerry Atkinson

Preface to the first edition

The use of hemopoietic stem cell transplantation to support high-dose chemotherapy or
chemoradiotherapy is rapidly developing and fast changing. During the 1980s and 1990s,
many marrow transplantation physicians had to start treating diseases they may not have
treated for many years. Examples would be the use of autologous transplantation for breast,
testicular, and ovarian cancer. Likewise, medical oncologists had to start becoming familiar
with marrow and blood stem cell transplantation medicine.

In addition, effective new nontransplant treatments were introduced and made thera-
peutic decision making for an individual patient even more difficult. Examples included
α-interferon for chronic myeloid leukemia and fludarabine for chronic lymphatic leukemia
and low-grade non-Hodgkin lymphoma.

All this change occurred against a background of shrinking hospital budgets and an
increasing concern for cost constraint.

These elements spurred the production of this book. Many long but useful hours were
spent arguing such issues for individual patients in the weekly meeting of the marrow
transplant program at St. Vincent’s Hospital. It became clear that “change” was becoming
the norm and marrow transplant physicians, like everyone else, had to adapt quickly. It thus
seemed important to provide data-driven outcome analyses to help therapeutic decision
making for individual patients.

Kerry Atkinson

Disclaimer: As in the first two editions, the authors have attempted to provide the most
accurate data and guidance possible. We recognize, however, that there may be unforeseen
errors in drug dosage and modification recommendations. We always encourage treating
physicians and their staff to consult the original source documents when developing specific
treatment plans.
Acknowledgments

Nicholas Dunton, Joanna Chamberlin, Caroline Mowatt, and Christopher Miller (Cambridge University Press) helped realize the third edition of *The BMT Data Book*. Talicia Tarver and John Cyras reviewed selected chapters. More than 60 authors (and their respective publishers) gave permission to use figures or graphs and provided valuable suggestions. We would especially like to thank our patients and their families for their motivation, courage, and trust.