A Student’s Guide to Lagrangians and Hamiltonians

A concise but rigorous treatment of variational techniques, focusing primarily on Lagrangian and Hamiltonian systems, this book is ideal for physics, engineering and mathematics students.

The book begins by applying Lagrange's equations to a number of mechanical systems. It introduces the concepts of generalized coordinates and generalized momentum. Following this, the book turns to the calculus of variations to derive the Euler–Lagrange equations. It introduces Hamilton’s principle and uses this throughout the book to derive further results. The Hamiltonian, Hamilton’s equations, canonical transformations, Poisson brackets and Hamilton–Jacobi theory are considered next. The book concludes by discussing continuous Lagrangians and Hamiltonians and how they are related to field theory.

Written in clear, simple language, and featuring numerous worked examples and exercises to help students master the material, this book is a valuable supplement to courses in mechanics.

PATRICK HAMILL is Professor Emeritus of Physics at San Jose State University. He has taught physics for over 30 years, and his research interests are in celestial mechanics and atmospheric physics.
A Student’s Guide to Lagrangians and Hamiltonians

PATRICK HAMILL
San Jose State University
Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>x</td>
</tr>
</tbody>
</table>

I LAGRANGIAN MECHANICS

1 Fundamental concepts

1.1 Kinematics 3
1.2 Generalized coordinates 5
1.3 Generalized velocity 7
1.4 Constraints 9
1.5 Virtual displacements 11
1.6 Virtual work and generalized force 12
1.7 Configuration space 13
1.8 Phase space 15
1.9 Dynamics 15
 1.9.1 Newton’s laws of motion 15
 1.9.2 The equation of motion 16
 1.9.3 Newton and Leibniz 16
1.10 Obtaining the equation of motion 18
 1.10.1 The equation of motion in Newtonian mechanics 19
 1.10.2 The equation of motion in Lagrangian mechanics 19
1.11 Conservation laws and symmetry principles 25
 1.11.1 Generalized momentum and cyclic coordinates 27
 1.11.2 The conservation of linear momentum 30
 1.11.3 The conservation of angular momentum 33
 1.11.4 The conservation of energy and the work function 36
1.12 Problems 41
Contents

2	The calculus of variations	44
2.1	Introduction	44
2.2	Derivation of the Euler–Lagrange equation	45
2.2.1	The difference between δ and d	52
2.2.2	Alternate forms of the Euler–Lagrange equation	55
2.3	Generalization to several dependent variables	58
2.4	Constraints	60
2.4.1	Holonomic constraints	60
2.4.2	Non-holonomic constraints	64
2.5	Problems	67

3	Lagrangian dynamics	70
3.1	The principle of d’Alembert. A derivation of Lagrange’s equations	70
3.2	Hamilton’s principle	73
3.3	Derivation of Lagrange’s equations	75
3.4	Generalization to many coordinates	75
3.5	Constraints and Lagrange’s λ-method	77
3.6	Non-holonomic constraints	81
3.7	Virtual work	83
3.7.1	Physical interpretation of the Lagrange multipliers	84
3.8	The invariance of the Lagrange equations	86
3.9	Problems	88

II | HAMILTONIAN MECHANICS | 91

4	Hamilton’s equations	93
4.1	The Legendre transformation	93
4.1.1	Application to thermodynamics	95
4.2	Application to the Lagrangian. The Hamiltonian	97
4.3	Hamilton’s canonical equations	98
4.4	Derivation of Hamilton’s equations from Hamilton’s principle	100
4.5	Phase space and the phase fluid	101
4.6	Cyclic coordinates and the Routhian procedure	104
4.7	Symplectic notation	106
4.8	Problems	107

5	Canonical transformations; Poisson brackets	109
5.1	Integrating the equations of motion	109
5.2	Canonical transformations	110
Contents

5.3 Poisson brackets 117
5.4 The equations of motion in terms of Poisson brackets 119
 5.4.1 Infinitesimal canonical transformations 120
 5.4.2 Canonical invariants 124
 5.4.3 Liouville’s theorem 127
 5.4.4 Angular momentum 128
5.5 Angular momentum in Poisson brackets 129
5.6 Problems 132

6 Hamilton–Jacobi theory 134
 6.1 The Hamilton–Jacobi equation 135
 6.2 The harmonic oscillator – an example 137
 6.3 Interpretation of Hamilton’s principal function 139
 6.4 Relationship to Schrödinger’s equation 140
 6.5 Problems 142

7 Continuous systems 144
 7.1 A string 144
 7.2 Generalization to three dimensions 150
 7.3 The Hamiltonian density 151
 7.4 Another one-dimensional system 154
 7.4.1 The limit of a continuous rod 156
 7.4.2 The continuous Hamiltonian and the canonical field equations 160
 7.5 The electromagnetic field 162
 7.6 Conclusion 166
 7.7 Problems 166

Bibliography 168
Answers to selected problems 169
Index 171
Introduction

The purpose of this book is to give the student of physics a basic overview of Lagrangians and Hamiltonians. We will focus on what are called variational techniques in mechanics. The material discussed here includes only topics directly related to the Lagrangian and Hamiltonian techniques. It is not a traditional graduate mechanics text and does not include many topics covered in texts such as those by Goldstein, Fetter and Walecka, or Landau and Lifshitz. To help you to understand the material, I have included a large number of easy exercises and a smaller number of difficult problems. Some of the exercises border on the trivial, and are included only to help you to focus on an equation or a concept. If you work through the exercises, you will better prepared to solve the difficult problems. I have also included a number of worked examples. You may find it helpful to go through them carefully, step by step.
Acknowledgements

I would like to acknowledge the students in my graduate mechanics classes whose interest in analytical mechanics were the inspiration for writing this book. I also wish to acknowledge my colleagues in the Department of Physics and Astronomy at San Jose State University, especially Dr. Alejandro Garcia and Dr. Michael Kaufman, from whom I have learned so much. Finally, I acknowledge the helpful and knowledgeable editors and staff at Cambridge University Press for their support and encouragement.