Physics, Pharmacology and Physiology for Anaesthetists
Key concepts for the FRCA
Second edition
Physics, Pharmacology and Physiology for Anaesthetists

Key concepts for the FRCA

Second edition

Matthew E. Cross MB ChB MA(Ed) MRCP FRCA
Consultant Anaesthetist, Queen Alexandra Hospital, Portsmouth, UK

Emma V. E. Plunkett MBBS MA MRCP FRCA
Specialist Registrar in Anaesthetics, Birmingham School of Anaesthesia, UK

Foreword to the second edition by

Professor Peter Hutton PhD FRCA FRCP FIMechE
Consultant Anaesthetist, University Hospital Birmingham and Honorary Professor of Anaesthesia, University of Birmingham, Birmingham, UK
It was with great sadness that we learned of the death of Dr Mark duBoulay shortly after the first edition of this book had gone to print. He is missed by many.

MC & EP

For Anna, Harvey and Fraser, a wonderful family

MC

For Mum and Dad. Thank you for everything.

EP
Contents

Acknowledgements page xii
Preface xiii
Foreword to the second edition
Professor Peter Hutton xv
Foreword to the first edition
Dr Tom E. Peck xvii

Introduction 1

Section 1 · Mathematical principles
Mathematical relationships 5
Exponential relationships and logarithms 7
Integration and differentiation 9
Physical measurement and calibration 16
The SI units 19
Non-SI units and conversion factors 23
Signal to noise ratio 26

Section 2 · Physical principles
Simple mechanics 29
The gas laws 31
Laminar flow 34
Turbulent flow 36
Bernoulli, Venturi and Coanda 37
Heat and temperature 40
Humidity 43
Latent heat 46
Isotherms 48
Mechanisms of heat loss 50
Solubility and diffusion 53
Osmosis and colligative properties 55
Principles of surface tension 57
Resistors and resistance 59
Capacitors and capacitance 60
Inductors and inductance 63
Wheatstone bridge 65
Resonance and damping 66
Cleaning, disinfection and sterilization 70
Contents

Section 3 - Principles of special equipment

- Magnetic resonance imaging 75
- Refraction and fibre optics 79
- Laser principles 81
- Surgical diathermy 84
- Medical ultrasound 87
- The Doppler effect 89
- Oesophageal doppler 90
- Cardiac output measurement 92
- Goal-directed fluid therapy 97
- Defibrillators 98
- Breathing systems 100
- Ventilator profiles 103
- Pulse oximetry 109
- Capnography 112
- Absorption of carbon dioxide 117
- Neuromuscular blockade monitoring 119
- Thromboelastography 124

Section 4 - Pharmacological principles

- Atomic structure 129
- Oxidation and reduction 131
- Chemical bonds 132
- Inorganic and organic chemistry 135
- Isomerism 138
- Enzyme kinetics 141
- G-proteins and second messengers 144
- The Meyer–Overton hypothesis 146
- The concentration and second gas effects 148
- Drug interactions 150
- Adverse drug reactions 151
- Pharmacogenetics 153

Section 5 - Pharmacodynamics

- Drug–receptor interaction 157
- Affinity, efficacy and potency 160
- Agonism and antagonism 164
- Hysteresis 170
- Tachyphylaxis and tolerance 171
- Drug dependence 173
Contents

<table>
<thead>
<tr>
<th>Section 6 - Pharmacokinetics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption, distribution and redistribution</td>
<td>175</td>
</tr>
<tr>
<td>First-pass metabolism and bioavailability</td>
<td>177</td>
</tr>
<tr>
<td>Volume of distribution</td>
<td>179</td>
</tr>
<tr>
<td>Clearance</td>
<td>181</td>
</tr>
<tr>
<td>Time constant and half life</td>
<td>183</td>
</tr>
<tr>
<td>Non-compartmental modelling</td>
<td>185</td>
</tr>
<tr>
<td>Compartmental modelling</td>
<td>187</td>
</tr>
<tr>
<td>Physiological modelling</td>
<td>188</td>
</tr>
<tr>
<td>Context-sensitive half time</td>
<td>190</td>
</tr>
<tr>
<td>Target controlled infusions</td>
<td>192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 7 - Respiratory physiology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung volumes</td>
<td>201</td>
</tr>
<tr>
<td>Spirometry</td>
<td>203</td>
</tr>
<tr>
<td>Flow–volume loops</td>
<td>205</td>
</tr>
<tr>
<td>The alveolar gas equation</td>
<td>207</td>
</tr>
<tr>
<td>The shunt equation</td>
<td>211</td>
</tr>
<tr>
<td>Pulmonary vascular resistance</td>
<td>212</td>
</tr>
<tr>
<td>Distribution of pulmonary blood flow</td>
<td>214</td>
</tr>
<tr>
<td>Ventilation/perfusion mismatch</td>
<td>216</td>
</tr>
<tr>
<td>Dead space</td>
<td>218</td>
</tr>
<tr>
<td>Fowler’s method</td>
<td>219</td>
</tr>
<tr>
<td>The Bohr equation</td>
<td>220</td>
</tr>
<tr>
<td>Oxygen delivery and transport</td>
<td>221</td>
</tr>
<tr>
<td>Classification of hypoxia</td>
<td>222</td>
</tr>
<tr>
<td>The oxyhaemoglobin dissociation curve</td>
<td>224</td>
</tr>
<tr>
<td>Carriage of carbon dioxide</td>
<td>226</td>
</tr>
<tr>
<td>Work of breathing</td>
<td>228</td>
</tr>
<tr>
<td>Control and effects of ventilation</td>
<td>230</td>
</tr>
<tr>
<td>Compliance and resistance</td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 8 - Cardiovascular physiology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Einthoven’s triangle and axis</td>
<td>233</td>
</tr>
<tr>
<td>Cardiac action potentials</td>
<td>235</td>
</tr>
<tr>
<td>The cardiac cycle</td>
<td>236</td>
</tr>
<tr>
<td>Electrocardiographic changes</td>
<td>238</td>
</tr>
<tr>
<td>Pressure and flow calculations</td>
<td>240</td>
</tr>
<tr>
<td>Central venous pressure</td>
<td>242</td>
</tr>
<tr>
<td>Pulmonary capillary wedge pressure</td>
<td>244</td>
</tr>
<tr>
<td>The Frank–Starling relationship</td>
<td>246</td>
</tr>
<tr>
<td>Venous return and capillary dynamics</td>
<td>248</td>
</tr>
</tbody>
</table>
Ventricular pressure–volume relationship 267
Systemic and pulmonary vascular resistance 272
The Valsalva manoeuvre 274
Control of heart rate 276
Materno-fetal and neonatal circulations 278
Shock 280

Section 9 · Renal physiology 281
Acid–base balance 283
Buffers and the anion gap 285
Glomerular filtration rate and tubulo-glomerular feedback 289
Autoregulation and renal vascular resistance 291
The loop of Henle 293
Glucose handling 295
Sodium handling 296
Potassium handling 297

Section 10 · Neurophysiology 299
Action potentials 301
Muscle structure and function 305
Muscle reflexes 308
The Monro–Kelly doctrine 310
Cerebral blood flow 313
Flow-metabolism coupling 316
Formation and circulation of cerebrospinal fluid 319
Pain 320

Section 11 · Applied sciences 323
The stress response 325
Cardiopulmonary exercise testing 328
Pregnancy 331
Paediatrics 337
Ageing 340
Obesity 344

Section 12 · Statistical principles 347
Types of data 349
Indices of central tendency and variability 351
Types of distribution 355
Methods of data analysis 357
Error and outcome prediction 366
Receiver operating characteristic curve 369
Contents

<table>
<thead>
<tr>
<th>Clinical trials</th>
<th>370</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence-based medicine</td>
<td>374</td>
</tr>
<tr>
<td>Kaplan Meier curves</td>
<td>376</td>
</tr>
<tr>
<td>Appendix</td>
<td>377</td>
</tr>
<tr>
<td>Index</td>
<td>404</td>
</tr>
</tbody>
</table>
Acknowledgements

We are grateful to the following individuals for their invaluable help in bringing this book to publication:

Surg Lt Cdr Bentley Waller BSc(Hons) MB ChB FRCA RN
Anaesthetics Department, Queen Alexandra Hospital, Portsmouth, UK

For his thorough proofreading of the first edition and his extraordinary yet diplomatic ability to suggest areas for improvement. Much appreciated.

Professor Peter Hutton PhD FRCA FRCP FIMechE
Anaesthetics Department, University Hospital Birmingham, Birmingham, UK

In addition we are grateful for permission to reprint the illustration on page 197 from Oxford University Press, and the illustrations on pages 296 and 297 from International Thomson Publishing Services Ltd., Cheriton House, North Way, Andover, UK.
Preface

In the years since the first edition of this book was published much has changed in the world of anaesthesia. Some of these changes relate to the way we practise as professionals and the way in which the evidence is shaping our knowledge in new areas. Other changes relate to the way in which anaesthetists in the United Kingdom progress through their training programmes. It is natural for the world around us to change in this way but, of course, it means that we have to continually reassess our practice, our knowledge and how that knowledge may best be applied.

Fortunately, the fundamental basic science principles that underpin much of anaesthesia have not changed to such an extent and so it is unlikely that you will suddenly be faced with the challenge of revising a newly discovered law of physics for the examination.

Where practice has changed, and where these changes have been incorporated into the syllabus of the Royal College, we have tried to reflect this in the latest edition. The second edition introduces applied physiology, more physical principles, fundamental biochemistry and many additional pages of information both in the body of the book and in the larger appendix. The layout and principles remain the same in that we hope you can use this book as a useful companion to explain some principles in a different way or to remind you of things that you will have read elsewhere. One thing that remains constant is that the FRCA examination is hard but fair. If you dedicate yourself to learning, absorbing and using all the information you need to be successful in the examination then you will emerge with the skills required to flourish in your profession. It is worth it and we hope this book can help you along the way.

Good luck in the examinations, by the time you read this the end is already in sight!
Foreword to the second edition

An understanding of physics, pharmacology and physiology is central to high-quality patient care. Grasping the key concepts is not optional: it is an essential cornerstone underpinning the frequent judgements that have to be made in everyday clinical practice.

Today, information is available from many sources: books, journals, the internet and podcasts. However, some of this is not written for the postgraduate student and a proportion is unfiltered and of uncertain provenance. Sorting the wheat from the chaff can be both time-consuming and frustrating, and not infrequently leaves the explorer less, rather than more, focused in their awareness of what really counts.

This book, written by two enthusiasts whose own experiences of postgraduate examinations is still within recent memory, is a considerable contribution to the resources of those preparing for postgraduate examinations in anaesthesia and intensive care. In terms of key subject areas, I cannot find anything included within it that is not essential and I can think of nothing excluded which is.

The text is clear and concise: the diagrams are immediately comprehensible but do not lack detail; the general presentation reflects good examination technique. The authors themselves recognize the need for more detailed companion texts where deeper study is necessary and have not tried to misrepresent their book’s place in the wider armamentarium of the examinee.

What all examinees need as they study for, and approach, postgraduate examinations is a single reliable source of pre-prepared essential information that they can both carry with them and refer to with confidence. This book meets these two needs admirably. In addition, the text style demonstrates the way to convey information quickly but without unnecessary embellishment – the ideal method for a candidate to adopt.

In summary, I think this is a valuable second edition of a text that has already received a considerable following. The authors have done an excellent job; postgraduate trainees have available a book that ‘does what it says on the can’; and examiners can look forward to future answers with that frequently elusive ‘high signal to noise ratio’.

All I can do now is to wish both the authors and the readers the very best in their personal efforts to provide high-quality care for patients. This after all, is what medicine is all about.

Professor Peter Hutton PhD FRCA FRCP FI MechE
Consultant Anaesthetist, University Hospital Birmingham
Honorary Professor, University of Birmingham
Foreword to the first edition

Many things are currently in a state of flux within the world of medical education and training, and the way in which candidates approach examinations is no exception. Gone are the days when large weighty works are the first port of call from which to start the learning experience. Trainees know that there are more efficient ways to get their heads around the concepts that are required in order to make sense of the facts.

It is said that a picture says a thousand words and this extends to diagrams as well. However, diagrams can be a double-edged sword for trainees unless they are accompanied by the relevant level of detail. Failure to label the axis, or to get the scale so wrong that the curve becomes contradictory is at best confusing.

This book will give back the edge to the examination candidate if they digest its contents. It is crammed full of precise, clear and well-labelled diagrams. In addition, the explanations are well structured and leave the reader with a clear understanding of the main point of the diagram and any additional information where required. It is also crammed full of definitions and derivations that are very accessible.

It has been pitched at those studying for the primary FRCA examination and I have no doubt that they will find it a useful resource. Due to its size, it is never going to have the last word, but it is not trying to achieve that. I am sure that it will also be a useful resource for those preparing for the final FRCA and also for those preparing teaching material for these groups.

Doctors Cross and Plunkett are to be congratulated on preparing such a clear and useful book – I shall be recommending it to others.

Dr Tom E. Peck MBBS BSc FRCA
Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, UK