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Abstract We review a selection of recent results linking approxi-
mate deconvolution operators with the rigorous approximation of
the Navier–Stokes equations and their averages.

1.1 Introduction

When studying existence, uniqueness, and other analytical properties

of solutions to partial differential equations in many different situations

one needs, as a general tool, suitable smoothing/approximation opera-

tors. These tools are used to construct approximate initial data and/or

approximate equations and are needed, for instance, to show existence

through approximation by smooth solutions or to make rigorous cal-

culations that will be otherwise just formal (for example in the study

of energy equalities). In the case of the incompressible Navier–Stokes

equations (NSE)

(NSE) ut + (u · ∇)u− νΔu+∇p = 0, (1.1)

with ∇ · u = 0, these tools have been used, for instance, in the classical

paper by Leray (1934), where the convective term (u · ∇)u is approxi-

mated by (ρε∗u·∇)u, with {ρε}ε>0 a classical family of Friedrichs molli-

fiers. Other applications of smoothing techniques occur also in the study

of singular limits, as in Beirão da Veiga (1993) and Majda (1984). See

also Kazhikhov (2006), where he studies approximate sequences weakly

converging in stronger topologies, with applications to the study of com-

pressible fluids.
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2 Berselli

Recently these tools have also been linked with a particular class of

Large Eddy Simulation (LES) models and in particular with some as-

pects of the mathematical theory of alpha-models. We recall that LES

models provide families of approximate systems which are computation-

ally easier to study than the full NSE, see Sagaut (2001), Geurts (2003),

Lesieur, Métais, & Comte (2005), and Berselli, Iliescu, & Layton (2006)

for an introduction to some of the aspects of LES. These models, which

are designed to be numerical methods for the practical computation

of averages of the velocity, are derived by means of different physical,

analytical, and numerical insights. In particular, we will review results

on approximate deconvolution alpha-methods, pointing out that their

mathematical analysis has only recently been addressed.

We do not treat any questions about modelling or numerical testing,

but we just make a review of some recent results for high accuracy mod-

els. These models with high accuracy are obtained by introducing ap-

proximate deconvolution into some well-known classical models; we will

consider them as mathematical methods to produce smooth and stable

approximations to the fluid motion, with conserved physical quantities.

We will restrict to the space-periodic case with x ∈]0, L[3 (this is the

only setting in which calculations have a sufficient level of mathematical

rigour) and we will consider the differential filter associated with the

Helmholtz operator A := I − α2Δ, for some α > 0. To this end, given a

field u, we define the averaged field u as the solution of

Au = u− α2Δu = u,

with periodic boundary conditions. It is easy to show that in this setting,

if ∇ · u = 0, then ∇ · u = 0, and u is also a solution of the Helmholtz–

Stokes system with zero pressure. In the sequel we will denote by · the

quantity obtained by application of the filter, that is, the inverse of A, i.e.

u := A−1u. Moreover, if Hs denotes the usual Sobolev space of periodic

functions with norm ‖ · ‖s, and Hs ⊂ (Hs)3 denotes the subspace of

divergence-free fields with zero mean-value, then when u ∈ Hs

1. u ∈ Hs+2 and ‖u− u‖s′ ≤ c α2(s−s′) for s′ < s, and

2. u → u in Hs, as α → 0+.

We will apply the ideas of approximate deconvolution to the following

three systems (Leray-α, Navier–Stokes-α, and Layton & Lewandowski
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1: Towards fluid equations by ADM 3

or simplified Bardina model)

(L-α) wt + (w · ∇)w− νΔw+∇q = 0, (1.2)

(NS-α) wt −w× (∇×w)− νΔw+∇q = 0, (1.3)

(LL) wt + (w · ∇)w− νΔw+∇q = 0. (1.4)

These models are supplemented with ∇ · w = 0, initial datum, and

periodic boundary conditions. The external force is set to zero to avoid

inessential complications. Here w denotes a field which is formally closer

and closer to the solutions of the NSE as the parameter α becomes

smaller and smaller, hence when the averaging defined through A−1

approaches the identity I.

Remark 1.1.1 In part of the literature a different notation is used

with functions u and v such that v := u − α2Δu. Up to some changes

in the pressure, the three models without deconvolution (1.2), (1.3), and

(1.4) are also denoted by

(L-α) vt + (u · ∇)v− νΔv+∇q = 0,

(NS-α) vt − u× (∇× v)− νΔv+∇q = 0,

(LL) vt + (u · ∇)u− νΔv+∇q = 0.

This notation reflects also a different way in which estimates are written,

since they can be stated in terms of u or of v. Moreover, in several cases

the parameter α is replaced by δ, in analogy with the classical notation

used in early studies of LES.

We cannot review all the literature concerning these models and we

just cite the most theoretical references treating them: therein the inter-

ested reader can find further results, related also with numerical com-

putations. The mathematical analysis for the Leray-α model (which is

the natural adaptation of Leray’s approach in the periodic case) can be

found in Cheskidov et al. (2005), while a modified method with regu-

larized convective term (w · ∇)w has been studied in Ilyin, Lunasin,

& Titi (2006). Concerning the NS-α model, also known as the viscous

Camassa–Holm equation, most of the results are proved in Foias, Holm,

& Titi (2002). A modification with nonlinearity given by −w× (∇×w)

and known as NS-ω can be found in Layton et al. (2010). The latter (LL)

model is studied in Layton & Lewandowski (2006a). It is also known as

the simplified Bardina model and has additionally been analysed in Cao,

Lunasin, & Titi (2006). Observe too that this model is the same as that
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4 Berselli

of Stolz & Adams when the deconvolution parameter vanishes: see Stolz

& Adams, 1999, Stolz, Adams, & Kleiser, 2001, Adams & Stolz, 2001.

These three models have been derived by different approaches: for

instance smoothing, clear balance of generalized energies (and models

helicity for NS-α without viscosity), and scale similarity, topics which

we do not address here. For the interested reader comparison of the

conserved quantities can be found in Rebholz (2007); see also Olson &

Titi (2007).

The introduction of Approximate Deconvolution Models (ADM) in

LES can be understood in the light of the following observation: after

having solved one of the above systems, the resulting field w is smooth,

and unique. It also solves a system (formally) close to that solved by u,

where u is a solution of the NSE with the same initial datum. On the

other hand, when α → 0+ it is possible to prove the convergencew → u,

where u is a Leray–Hopf weak solution. (This result is proved in the

above references and one needs some care to handle this limit rigorously.)

Nevertheless, this latter result does not seem to have a terrific impact in

applications, since the radius of the filter α > 0 is related to the mesh

size h of the numerical method used to simulate fluid motion. (In our

setting this is not the radius, but the name is used by analogy to that

related with filtering by convolution with functions of compact support

or with Gaussian fields.) The parameter α is related (and it should be

of the same order as h) to the smallest persistent scale. Using Fourier

series expansions, if u(x) =
∑

k∈T uk e
ik·x, with T := 2π

L Z3\{0}, then

A−1u =
∑
k∈T

uk

1 + α2|k|2 e ik·x.

Consequently, the parameter α is also linked to the amount of damping

introduced in high-frequencies. In applications one wishes to solve all

relevant scales (full resolution of the flow) and this requires, due to

the Kolmogorov K41-theory, that h = O(Re−3/4). For real-life flows

this resolution cannot be obtained, due to the constraint of memory

capacity of supercomputers currently (and for the foreseeable future)

available. This introduces a strong limitation on the values of α which

are meaningful when using alpha-models in numerical computations.

On the other hand, the overall philosophy behind turbulence mod-

elling is that w should represent (in a sense to be specified) a “mean

velocity”. This is reasonable since macroscopic properties are not de-

termined by pointwise behaviour of the velocity or pressure fields, but

most likely by their averages. We also expect that, on average, solutions
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1: Towards fluid equations by ADM 5

behave in a better way than single trajectories, see Foias et al. (2001b).

This poses two serious constraints: the quantity w needs to be numer-

ically computable and the quantity w should be close enough to the

observable mean fields to be compared with real-life data. This suggests

that decreasing α may not be so useful in view of computations. It also

challenges us to try to find a way to improve the performance of the

method, without dramatically increasing the computational cost. This

can be obtained by replacing the filter with another operator that is

closer to the identity, but not too expensive to evaluate numerically (in

a sense that we will explain later on). Clearly the inversion of the filter

(even when invertible!) does not seem to be a good idea, since generally

this leads to an ill-conditioned problem. Moreover, the application of the

inverse of the filter will have as a result “no-modelling” being introduced

in the equations.

A possible implementation of this heuristic idea can be obtained for

instance by means of a family of Approximate Deconvolution (AD) op-

erators {DN}N∈N such that:

1. D0 = I;

2. for eachN ∈ N the operatorDN is of zero-order (in terms of regularity

of Sobolev spaces);

3. at least formally

DN → A, as N → +∞.

Having such a family of operators, the Leray-α model can be replaced

by the model with higher accuracy

wt + (DNw · ∇)w− νΔw+∇q = 0.

The convective field DNw is closer to the field w than the previous one

D0w := w present in (1.2). Most likely the properties of the model with

(AD) are much better than those of Leray-α, which can be seen as a

zeroth-order deconvolution model.

In several cases the introduction of a deconvolution operator is sug-

gested, as in Stolz & Adams (1999) with N ∼ 5, and the practical use

in computations is to fix N and α, tuning the parameters to optimize

the performance of the code versus the numerical instabilities. On the

other hand, from the theoretical point of view we would like to have

mathematical support for this modelling idea. In order to justify the

implementation of deconvolution models, we will study their limiting

behaviour, trying to obtain some insight from the analytical results. A
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6 Berselli

review of ADM can also be found in the book by Layton & Rebholz

(2012).

Plan of the paper. We will review some of the PDE results concerning

the application of AD to the three aforementioned models. In particular,

in Section 1.2 we introduce the basics of deconvolution operators and

in Section 1.3 we introduce ADM. Next, we will skip all modelling and

numerical testing and in Sections 1.4–1.5 we will focus only on the energy

spectra and on the rigorous mathematical analysis results which can

be obtained by considering the limits α → 0+ for fixed N ∈ N, and

N → +∞ for fixed α > 0.

1.2 The approximate deconvolution

Once a filter is defined, it is computationally relevant to have an approx-

imate way to invert it. Approximation is needed since, in principle, the

filtering operator defined by G = A−1 is not invertible, or the inverse is

not bounded, or it is not possible to invert it stably, due to a small di-

visor problem, as with the Gaussian filter (Berselli et al. (2006) §7). For
these reasons one wishes to have some kind of a “best approximation for

its inversion” or equivalently an approximate solution to the problem:

given u find u such that

A−1u = u. (1.5)

The classical example coming from signal theory is that of a signal fil-

tered by some transmitting/recording device, where the challenge is to

reconstruct, in a satisfactory way, the original signal. Early results on

deconvolution have been obtained by Wiener (1949), even if the ideas are

older and some delay in their diffusion has been caused by the book be-

ing classified during World War II. Another field in which one generally

uses approximate deconvolution is that of inverse problems as in image

reconstruction and, in fact, the first example we will consider comes from

this field.

Some deconvolution operators. We review some of the classical de-

convolution operators, and we specify them in the case of the Helmholtz

operator with periodic boundary conditions, in order to better compare

their properties.
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1: Towards fluid equations by ADM 7

van Cittert. The van Cittert (1931) algorithm (common in image re-

construction) is a Richardson iteration for equation (1.5) that works as

follows: given u0 := u, set

uN+1 := uN + (u− A−1uN ).

The operator DN is defined by DNu := uN . The van Cittert algorithm

is based on successive applications of the filter (in fact u1 = 2u − u,

u2 = 3u − 3u + u, and so on). One of the main properties of this

algorithm, in the case of the Helmholtz operators is the following, which

is based on a representationb via a truncated von Neumann series, see

Dunca & Epshteyn (2006), Stolz et al. (2001), and Berselli et al. (2006)

§ 8.

Lemma 1.2.1 Let A−1 be defined through the Helmholtz filter. Then,

for any w ∈ L2 it follows that

w−DNw = (−1)N+1α2N+2ΔN+1A−(N+1)w.

This identity can be used to estimate the residual stress in a precise

way for different LES models, see Layton & Lewandowski (2006b). One

of the interesting features of the van Cittert operator is that it can be

applied also in more complicated situations (boundary value problems)

even if its properties are slightly different in that setting (in particu-

lar the problem of commutation with first order differential operators

arises). By specifying the operator in the periodic setting we can write

its symbol as follows: D̂vCNu(k) := D̂vCN(k)û(k) with

D̂vCN (k) :=

N∑
n=0

(
α2k2

1 + α2k2

)n

= (1 + α2k2)

[
1−
(

α2k2

1 + α2k2

)N+1
]
,

where k := |k|.
This operator has also an accelerated variant defined by the iteration

uN+1 := uN + ωN (u−A−1uN ),

with relaxation parameters ωi ∈ R. Optimization of these parameters

with K41-theory can be found in Layton & Stanculescu (2007). The

accelerated operators turn out to be self-adjoint and, if the relaxation

parameters ωi are positive, also positive definite.
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8 Berselli

Yosida. Another deconvolution operator, which is very common in the

theory of semigroups or in the calculus of variations is the regularization

coming from Yosida (1995), defined, for μ > 0 by

uμ :=
I− (I + μA)−1

μ
u, μ > 0.

To compare with the van Cittert operator we write the explicit expres-

sion for the symbol of the Yosida approximation in Fourier variables

D̂Yμ(k) := (1 + α2k2)
1

μ+ 1
1+α2k2

.

Tikhonov and Tikhonov–Lavrentiev. The classical Tikhonov

method, see Tikhonov & Arsenin (1977), is based on the solution of

a least squares method, with a regularization parameter μ > 0. The

approximate solution of Gu = u is given by uμ, which solves

uμ := argmin
μ

[
‖Gu− u‖2 + μ‖u‖2

]
,

where we denote by ‖ . ‖ the L2-norm.

In case of a symmetric and positive-definite operator one can employ

the Lavrentiev adaption and the Tikhonov–Lavrentiev regularization is

given by the solution of the following minimization problem

uμ := argmin
μ

[1
2
(Gu− u,u) +

μ

2
‖u‖2

]
;

by differentiation it follows that

uμ = (μI +A−1)−1 u, 0 < μ < 1.

For small wave numbers (large scales) this operator is not a good ap-

proximation of the operator A (and it is close to G−1 only for very small

values of μ). By specifying the filter as the Helmholtz one, one obtains

in Fourier variables

D̂TLμ(k) := (1 + α2k2)
1

μ+ 1
1+α2k2

,

i.e. exactly the same expression as the Yosida approximation.

Modified Tikhonov method. This method was introduced in Stan-

culescu & Manica (2010) and is designed for symmetric positive-definite
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1: Towards fluid equations by ADM 9

operators. Given u the approximate deconvolution solution uμ is defined

by

uμ :=
(
μI + (1 − μ)A−1

)−1
u, 0 < μ < 1.

We have the following expression for the operator in Fourier variables

D̂MTμ(k) := (1 + α2k2)
1

1 − μ+ μ(1 + α2k2)
.

To better compare the deconvolution operators we set the parameter

μ := (N + 1)−1 and we have the expressions given in Table 1.1.

Deconvolution operator Symbol in Fourier variables

A = G−1 (1 + α2k2)

van Cittert (1 + α2k2)

[
1−

(
α2k2

(1 + α2k2)

)N+1
]

Tikhonov–Lavrentiev & Yosida (1 + α2k2)
N + 1

N + 1 + (1 + α2k2)

Modified Tikhonov (1 + α2k2)
N + 1

N + 1 + α2k2

Table 1.1 Comparison of deconvolution operators for μ := (N + 1)−1.

Moreover, in all cases we have the following asymptotic expression.

Lemma 1.2.2 For μ = (N + 1)−1, with N ∈ N, each of the four

deconvolution operators (denoted generically by DN ) maps Hs into Hs,

is self-adjoint, commutes with differentiation, and

N + 1

N + 2
≤ D̂N(k) ≤ N + 1 ∀k ∈ T , α > 0,

lim
k→+∞

D̂N (k) = N + 1 for fixed α > 0,

D̂N (k) ≤ (1 + α2k2) ∀k ∈ T , α > 0.

In the cases of the van Cittert and of the modified Tikhonov schemes

we also have the estimate 1 ≤ D̂N(k) ≤ N + 1. By direct inspection

the van Cittert one is closer to the operator without deconvolution.

We also observe that, beside the four operators we presented, other de-

convolution operators have been recently introduced and analysed, for
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Figure 1.1 For N = 5, asymptotics near the origin. Solid for van Cittert,

dashed for Tikhonov–Lavrentiev, and dash-dotted for modified Tikhonov.
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Figure 1.2 For N = 5, asymptotics for large wave numbers. Solid for

van Cittert, dashed for Tikhonov–Lavrentiev, and dash-dotted for modi-

fied Tikhonov.

example, see Lewandowski (2009) for applications to some LES prob-

lems. In particular, the continuous deconvolution operator introduced

in Bennis, Lewandowski, & Titi (2009) is defined by observing an anal-

ogy between the van Cittert algorithm and a finite difference equation,

and by replacing discrete quantities with continuous ones.

1.3 High accuracy deconvolution alpha-models

In this section we introduce some LES models which are obtained from

(1.2), (1.3), and (1.4) when introducing a deconvolution operator. Here

DN can be any of the deconvolution operators introduced in the previous

section. Generally the theory is specialized for the van Cittert one but,

being based on asymptotic properties of the operator, it can be adapted
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