The Geometry of Physics

This book is intended to provide a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles, and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, elasticity theory, the geometry and topology of Kirchhoff’s electric circuit laws, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase, and instanton winding numbers, quarks, and the quark model for mesons. Before a discussion of abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should be of interest also to mathematics students.

This book will be useful to graduate and advance undergraduate students of physics, engineering, and mathematics. It can be used as a course text or for self-study.

This Third Edition includes a new overview of Cartan’s exterior differential forms. It previews many of the geometric concepts developed in the text and illustrates their applications to a single extended problem in engineering; namely, the Cauchy stresses created by a small twist of an elastic cylindrical rod about its axis.

THEODORE FRANKEL received his Ph.D. from the University of California, Berkeley. He is currently Emeritus Professor of Mathematics at the University of California, San Diego.
The Geometry of Physics
An Introduction

Third Edition

Theodore Frankel
University of California, San Diego
For
Thom-kat, Mont, Dave
and
Jonnie

and

In fond memory of
Raoul Bott
1923–2005

Photograph of Raoul by Montgomery Frankel
Contents

Preface to the Third Edition
Preface to the Second Edition
Preface to the Revised Printing
Preface to the First Edition

Overview. An Informal Overview of Cartan’s Exterior Differential Forms, Illustrated with an Application to Cauchy’s Stress Tensor

- Introduction
- Vectors, 1-Forms, and Tensors
- Two Kinds of Vectors
- Superscripts, Subscripts, Summation Convention
- Riemannian Metrics
- Tensors
- Integrals and Exterior Forms
- Line Integrals
- Exterior 2-Forms
- Exterior p-Forms and Algebra in \mathbb{R}^n
- The Exterior Differential d
- The Push-Forward of a Vector and the Pull-Back of a Form
- Surface Integrals and “Stokes’ Theorem”
- Electromagnetism, or, Is it a Vector or a Form?
- Interior Products
- Volume Forms and Cartan’s Vector Valued Exterior Forms
- Magnetic Field for Current in a Straight Wire
- Elasticity and Stresses
- Cauchy Stress, Floating Bodies, Twisted Cylinders, and Strain Energy
- Sketch of Cauchy’s “First Theorem”
- Sketch of Cauchy’s “Second Theorem,” Moments as Generators of Rotations
- A Remarkable Formula for Differentiating Line, Surface, and . . . , Integrals
I Manifolds, Tensors, and Exterior Forms

1 Manifolds and Vector Fields

1.1. Submanifolds of Euclidean Space
 1.1a. Submanifolds of \mathbb{R}^N 3
 1.1b. The Geometry of Jacobian Matrices: The “Differential” 7
 1.1c. The Main Theorem on Submanifolds of \mathbb{R}^N 8
 1.1d. A Nontrivial Example: The Configuration Space of a Rigid Body 9

1.2. Manifolds
 1.2a. Some Notions from Point Set Topology 11
 1.2b. The Idea of a Manifold 13
 1.2c. A Rigorous Definition of a Manifold 19
 1.2d. Complex Manifolds: The Riemann Sphere 21

1.3. Tangent Vectors and Mappings
 1.3a. Tangent or “Contravariant” Vectors 23
 1.3b. Vectors as Differential Operators 24
 1.3c. The Tangent Space to M^n at a Point 25
 1.3d. Mappings and Submanifolds of Manifolds 26
 1.3e. Change of Coordinates 29

1.4. Vector Fields and Flows
 1.4a. Vector Fields and Flows on \mathbb{R}^n 30
 1.4b. Vector Fields on Manifolds 33
 1.4c. Straightening Flows 34

2 Tensors and Exterior Forms

2.1. Covectors and Riemannian Metrics
 2.1a. Linear Functionals and the Dual Space 37
 2.1b. The Differential of a Function 40
 2.1c. Scalar Products in Linear Algebra 42
 2.1d. Riemannian Manifolds and the Gradient Vector 45
 2.1e. Curves of Steepest Ascent 46

2.2. The Tangent Bundle
 2.2a. The Tangent Bundle 48
 2.2b. The Unit Tangent Bundle 50

2.3. The Cotangent Bundle and Phase Space
 2.3a. The Cotangent Bundle 52
 2.3b. The Pull-Back of a Covector 52
 2.3c. The Phase Space in Mechanics 54
 2.3d. The Poincaré 1-Form 56

2.4. Tensors
 2.4a. Covariant Tensors 58
 2.4b. Contravariant Tensors 59
 2.4c. Mixed Tensors 60
 2.4d. Transformation Properties of Tensors 62
 2.4e. Tensor Fields on Manifolds 63
CONTENTS ix

2.5. The Grassmann or Exterior Algebra 66
2.5a. The Tensor Product of Covariant Tensors 66
2.5b. The Grassmann or Exterior Algebra 66
2.5c. The Geometric Meaning of Forms in \(\mathbb{R}^n \) 70
2.5d. Special Cases of the Exterior Product 70
2.5e. Computations and Vector Analysis 71

2.6. Exterior Differentiation 73
2.6a. The Exterior Differential 73
2.6b. Examples in \(\mathbb{R}^3 \) 75
2.6c. A Coordinate Expression for \(d \) 76

2.7. Pull-Backs 77
2.7a. The Pull-Back of a Covariant Tensor 77
2.7b. The Pull-Back in Elasticity 80

2.8. Orientation and Pseudoforms 82
2.8a. Orientation of a Vector Space 82
2.8b. Orientation of a Manifold 83
2.8c. Orientability and 2-Sided Hypersurfaces 84
2.8d. Projective Spaces 85
2.8e. Pseudoforms and the Volume Form 85
2.8f. The Volume Form in a Riemannian Manifold 87

2.9. Interior Products and Vector Analysis 89
2.9a. Interior Products and Contractions 89
2.9b. Interior Product in \(\mathbb{R}^3 \) 90
2.9c. Vector Analysis in \(\mathbb{R}^3 \) 92

2.10. Dictionary 94

3 Integration of Differential Forms 95

3.1. Integration over a Parameterized Subset 95
3.1a. Integration of a \(p \)-Form in \(\mathbb{R}^p \) 95
3.1b. Integration over Parameterized Subsets 96
3.1c. Line Integrals 97
3.1d. Surface Integrals 99
3.1e. Independence of Parameterization 101
3.1f. Integrals and Pull-Backs 102
3.1g. Concluding Remarks 102

3.2. Integration over Manifolds with Boundary 104
3.2a. Manifolds with Boundary 105
3.2b. Partitions of Unity 106
3.2c. Integration over a Compact Oriented Submanifold 108
3.2d. Partitions and Riemannian Metrics 109

3.3. Stokes’s Theorem 110
3.3a. Orienting the Boundary 110
3.3b. Stokes’s Theorem 111

3.4. Integration of Pseudoforms 114
3.4a. Integrating Pseudo-\(n \)-Forms on an \(n \)-Manifold 115
3.4b. Submanifolds with Transverse Orientation 115
3.4c. Integration over a Submanifold with Transverse Orientation 116
3.4d. Stokes’s Theorem for Pseudoforms 117
3.5. Maxwell’s Equations 118
3.5a. Charge and Current in Classical Electromagnetism 118
3.5b. The Electric and Magnetic Fields 119
3.5c. Maxwell’s Equations 120
3.5d. Forms and Pseudoforms 122

4 The Lie Derivative 125
4.1. The Lie Derivative of a Vector Field 125
4.1a. The Lie Bracket 125
4.1b. Jacobi’s Variational Equation 127
4.1c. The Flow Generated by $[X, Y]$ 129
4.2. The Lie Derivative of a Form 132
4.2a. Lie Derivatives of Forms 132
4.2b. Formulas Involving the Lie Derivative 134
4.2c. Vector Analysis Again 136
4.3. Differentiation of Integrals 138
4.3a. The Autonomous (Time-Independent) Case 138
4.3b. Time-Dependent Fields 140
4.3c. Differentiating Integrals 142
4.4. A Problem Set on Hamiltonian Mechanics 145
4.4a. Time-Independent Hamiltonians 147
4.4b. Time-Dependent Hamiltonians and Hamilton’s Principle 151
4.4c. Poisson brackets 154

5 The Poincaré Lemma and Potentials 155
5.1. A More General Stokes’s Theorem 155
5.2. Closed Forms and Exact Forms 156
5.3. Complex Analysis 158
5.4. The Converse to the Poincaré Lemma 160
5.5. Finding Potentials 162

6 Holonomic and Nonholonomic Constraints 165
6.1. The Frobenius Integrability Condition 165
6.1a. Planes in \mathbb{R}^3 165
6.1b. Distributions and Vector Fields 167
6.1c. Distributions and 1-Forms 167
6.1d. The Frobenius Theorem 169
6.2. Integrability and Constraints 172
6.2a. Foliations and Maximal Leaves 172
6.2b. Systems of Mayer–Lie 174
6.2c. Holonomic and Nonholonomic Constraints 175
CONTENTS

6.3. Heuristic Thermodynamics via Caratheodory 178
 6.3a. Introduction 178
 6.3b. The First Law of Thermodynamics 179
 6.3c. Some Elementary Changes of State 180
 6.3d. The Second Law of Thermodynamics 181
 6.3e. Entropy 183
 6.3f. Increasing Entropy 185
 6.3g. Chow’s Theorem on Accessibility 187

II Geometry and Topology

7 \(\mathbb{R}^3 \) and Minkowski Space 191
 7.1. Curvature and Special Relativity 191
 7.1a. Curvature of a Space Curve in \(\mathbb{R}^3 \) 191
 7.1b. Minkowski Space and Special Relativity 192
 7.1c. Hamiltonian Formulation 196
 7.2. Electromagnetism in Minkowski Space 196
 7.2a. Minkowski’s Electromagnetic Field Tensor 196
 7.2b. Maxwell’s Equations 198

8 The Geometry of Surfaces in \(\mathbb{R}^3 \) 201
 8.1. The First and Second Fundamental Forms 201
 8.1a. The First Fundamental Form, or Metric Tensor 201
 8.1b. The Second Fundamental Form 203
 8.2. Gaussian and Mean Curvatures 205
 8.2a. Symmetry and Self-Adjointness 205
 8.2b. Principal Normal Curvatures 206
 8.2c. Gauss and Mean Curvatures: The Gauss Normal Map 207
 8.3. The Brouwer Degree of a Map: A Problem Set 210
 8.3a. The Brouwer Degree 210
 8.3b. Complex Analytic (Holomorphic) Maps 214
 8.3c. The Gauss Normal Map Revisited: The Gauss–Bonnet Theorem 215
 8.3d. The Kronecker Index of a Vector Field 215
 8.3e. The Gauss Looping Integral 218
 8.4. Area, Mean Curvature, and Soap Bubbles 221
 8.4a. The First Variation of Area 221
 8.4b. Soap Bubbles and Minimal Surfaces 226
 8.5. Gauss’s Theorema Egregium 228
 8.5a. The Equations of Gauss and Codazzi 228
 8.5b. The Theorema Egregium 230
 8.6. Geodesics 232
 8.6a. The First Variation of Arc Length 232
 8.6b. The Intrinsic Derivative and the Geodesic Equation 234
 8.7. The Parallel Displacement of Levi-Civita 236
9 Covariant Differentiation and Curvature

9.1. Covariant Differentiation

9.1a. Covariant Derivative

9.1b. Curvature of an Affine Connection

9.1c. Torsion and Symmetry

9.2. The Riemannian Connection

9.3. Cartan’s Exterior Covariant Differential

9.3a. Vector-Valued Forms

9.3b. The Covariant Differential of a Vector Field

9.3c. Cartan’s Structural Equations

9.3d. The Exterior Covariant Differential of a Vector-Valued Form

9.3e. The Curvature 2-Forms

9.4. Change of Basis and Gauge Transformations

9.4a. Symmetric Connections Only

9.4b. Change of Frame

9.5. The Curvature Forms in a Riemannian Manifold

9.5a. The Riemannian Connection

9.5b. Riemannian Surfaces M^2

9.5c. An Example

9.6. Parallel Displacement and Curvature on a Surface

9.7. Riemann’s Theorem and the Horizontal Distribution

9.7a. Flat metrics

9.7b. The Horizontal Distribution of an Affine Connection

9.7c. Riemann’s Theorem

10 Geodesics

10.1. Geodesics and Jacobi Fields

10.1a. Vector Fields Along a Surface in M^n

10.1b. Geodesics

10.1c. Jacobi Fields

10.1d. Energy

10.2. Variational Principles in Mechanics

10.2a. Hamilton’s Principle in the Tangent Bundle

10.2b. Hamilton’s Principle in Phase Space

10.2c. Jacobi’s Principle of “Least” Action

10.2d. Closed Geodesics and Periodic Motions

10.3. Geodesics, Spiders, and the Universe

10.3a. Gaussian Coordinates

10.3b. Normal Coordinates on a Surface

10.3c. Spiders and the Universe

11 Relativity, Tensors, and Curvature

11.1. Heuristics of Einstein’s Theory

11.1a. The Metric Potentials

11.1b. Einstein’s Field Equations

11.1c. Remarks on Static Metrics
CONTENTS

11.2. Tensor Analysis
11.2a. Covariant Differentiation of Tensors 298
11.2b. Riemannian Connections and the Bianchi Identities 299
11.2c. Second Covariant Derivatives: The Ricci Identities 301

11.3. Hilbert’s Action Principle
11.3a. Geodesics in a Pseudo-Riemannian Manifold 303
11.3b. Normal Coordinates, the Divergence and Laplacian 303
11.3c. Hilbert’s Variational Approach to General Relativity 305

11.4. The Second Fundamental Form in the Riemannian Case
11.4a. The Induced Connection and the Second Fundamental Form 309

11.5. The Geometry of Einstein’s Equations
11.5a. The Einstein Tensor in a (Pseudo-)Riemannian Space–Time 315
11.5b. The Relativistic Meaning of Gauss’s Equation 316
11.5c. The Second Fundamental Form of a Spatial Slice 318
11.5d. The Codazzi Equations 319
11.5e. Some Remarks on the Schwarzschild Solution 320

12 Curvature and Topology: Synge’s Theorem 323
12.1. Synge’s Formula for Second Variation 324
12.1a. The Second Variation of Arc Length 324
12.1b. Jacobi Fields 326

12.2. Curvature and Simple Connectivity
12.2a. Synge’s Theorem 329
12.2b. Orientability Revisited 331

13 Betti Numbers and De Rham’s Theorem 333
13.1. Singular Chains and Their Boundaries 333
13.1a. Singular Chains 333
13.1b. Some 2-Dimensional Examples 338

13.2. The Singular Homology Groups
13.2a. Coefficient Fields 342
13.2b. Finite Simplicial Complexes 343
13.2c. Cycles, Boundaries, Homology and Betti Numbers 344

13.3. Homology Groups of Familiar Manifolds
13.3a. Some Computational Tools 347
13.3b. Familiar Examples 350

13.4. De Rham’s Theorem
13.4a. The Statement of de Rham’s Theorem 355
13.4b. Two Examples 357
14 Harmonic Forms

14.1. The Hodge Operators

14.1a. The \ast Operator

14.1b. The Codifferential Operator $\delta = d^\ast$

14.1c. Maxwell’s Equations in Curved Space–Time M^4

14.1d. The Hilbert Lagrangian

14.2. Harmonic Forms

14.2a. The Laplace Operator on Forms

14.2b. The Laplacian of a 1-Form

14.2c. Harmonic Forms on Closed Manifolds

14.2d. Harmonic Forms and de Rham’s Theorem

14.2e. Bochner’s Theorem

14.3. Boundary Values, Relative Homology, and Morse Theory

14.3a. Tangential and Normal Differential Forms

14.3b. Hodge’s Theorem for Tangential Forms

14.3c. Relative Homology Groups

14.3d. Hodge’s Theorem for Normal Forms

14.3e. Morse’s Theory of Critical Points

III Lie Groups, Bundles, and Chern Forms

15 Lie Groups

15.1. Lie Groups, Invariant Vector Fields and Forms

15.1a. Lie Groups

15.1b. Invariant Vector Fields and Forms

15.2. One Parameter Subgroups

15.3. The Lie Algebra of a Lie Group

15.3a. The Lie Algebra

15.3b. The Exponential Map

15.3c. Examples of Lie Algebras

15.3d. Do the 1-Parameter Subgroups Cover G?

15.4. Subgroups and Subalgebras

15.4a. Left Invariant Fields Generate Right Translations

15.4b. Commutators of Matrices

15.4c. Right Invariant Fields

15.4d. Subgroups and Subalgebras

16 Vector Bundles in Geometry and Physics

16.1. Vector Bundles

16.1a. Motivation by Two Examples

16.1b. Vector Bundles

16.1c. Local Trivializations

16.1d. The Normal Bundle to a Submanifold

16.2. Poincaré’s Theorem and the Euler Characteristic

16.2a. Poincaré’s Theorem

16.2b. The Stiefel Vector Field and Euler’s Theorem
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.</td>
<td>Connections in a Vector Bundle</td>
<td>428</td>
</tr>
<tr>
<td>16.3a.</td>
<td>Connection in a Vector Bundle</td>
<td>428</td>
</tr>
<tr>
<td>16.3b.</td>
<td>Complex Vector Spaces</td>
<td>431</td>
</tr>
<tr>
<td>16.3c.</td>
<td>The Structure Group of a Bundle</td>
<td>433</td>
</tr>
<tr>
<td>16.3d.</td>
<td>Complex Line Bundles</td>
<td>433</td>
</tr>
<tr>
<td>16.4.</td>
<td>The Electromagnetic Connection</td>
<td>435</td>
</tr>
<tr>
<td>16.4a.</td>
<td>Lagrange's Equations Without Electromagnetism</td>
<td>435</td>
</tr>
<tr>
<td>16.4b.</td>
<td>The Modified Lagrangian and Hamiltonian</td>
<td>436</td>
</tr>
<tr>
<td>16.4c.</td>
<td>Schrödinger's Equation in an Electromagnetic Field</td>
<td>439</td>
</tr>
<tr>
<td>16.4d.</td>
<td>Global Potentials</td>
<td>443</td>
</tr>
<tr>
<td>16.4e.</td>
<td>The Dirac Monopole</td>
<td>444</td>
</tr>
<tr>
<td>16.4f.</td>
<td>The Aharonov–Bohm Effect</td>
<td>446</td>
</tr>
<tr>
<td>17.1.</td>
<td>Fiber Bundles and Principal Bundles</td>
<td>451</td>
</tr>
<tr>
<td>17.1a.</td>
<td>Fiber Bundles</td>
<td>451</td>
</tr>
<tr>
<td>17.1b.</td>
<td>Principal Bundles and Frame Bundles</td>
<td>453</td>
</tr>
<tr>
<td>17.1c.</td>
<td>Action of the Structure Group on a Principal Bundle</td>
<td>454</td>
</tr>
<tr>
<td>17.2.</td>
<td>Coset Spaces</td>
<td>456</td>
</tr>
<tr>
<td>17.2a.</td>
<td>Cosets</td>
<td>456</td>
</tr>
<tr>
<td>17.2b.</td>
<td>Grassmann Manifolds</td>
<td>459</td>
</tr>
<tr>
<td>17.3.</td>
<td>Chern's Proof of the Gauss–Bonnet–Poincaré Theorem</td>
<td>460</td>
</tr>
<tr>
<td>17.3a.</td>
<td>A Connection in the Frame Bundle of a Surface</td>
<td>460</td>
</tr>
<tr>
<td>17.3b.</td>
<td>The Gauss–Bonnet–Poincaré Theorem</td>
<td>462</td>
</tr>
<tr>
<td>17.3c.</td>
<td>Gauss–Bonnet as an Index Theorem</td>
<td>465</td>
</tr>
<tr>
<td>17.4.</td>
<td>Line Bundles, Topological Quantization, and Berry Phase</td>
<td>465</td>
</tr>
<tr>
<td>17.4a.</td>
<td>A Generalization of Gauss–Bonnet</td>
<td>465</td>
</tr>
<tr>
<td>17.4b.</td>
<td>Berry Phase</td>
<td>468</td>
</tr>
<tr>
<td>17.4c.</td>
<td>Monopoles and the Hopf Bundle</td>
<td>473</td>
</tr>
<tr>
<td>18.1.</td>
<td>Forms with Values in a Lie Algebra</td>
<td>475</td>
</tr>
<tr>
<td>18.1a.</td>
<td>The Maurer–Cartan Form</td>
<td>475</td>
</tr>
<tr>
<td>18.1b.</td>
<td>g-Valued p-Forms on a Manifold</td>
<td>477</td>
</tr>
<tr>
<td>18.1c.</td>
<td>Connections in a Principal Bundle</td>
<td>479</td>
</tr>
<tr>
<td>18.2.</td>
<td>Associated Bundles and Connections</td>
<td>481</td>
</tr>
<tr>
<td>18.2a.</td>
<td>Associated Bundles</td>
<td>481</td>
</tr>
<tr>
<td>18.2b.</td>
<td>Connections in Associated Bundles</td>
<td>483</td>
</tr>
<tr>
<td>18.2c.</td>
<td>The Associated Ad Bundle</td>
<td>485</td>
</tr>
<tr>
<td>18.3.</td>
<td>r-Form Sections of a Vector Bundle: Curvature</td>
<td>488</td>
</tr>
<tr>
<td>18.3a.</td>
<td>r-Form sections of E</td>
<td>488</td>
</tr>
<tr>
<td>18.3b.</td>
<td>Curvature and the Ad Bundle</td>
<td>489</td>
</tr>
<tr>
<td>19.1.</td>
<td>The Groups $SO(3)$ and $SU(2)$</td>
<td>491</td>
</tr>
<tr>
<td>19.1a.</td>
<td>The Rotation Group $SO(3)$ of \mathbb{R}^3</td>
<td>492</td>
</tr>
<tr>
<td>19.1b.</td>
<td>$SU(2)$: The Lie algebra $su(2)$</td>
<td>493</td>
</tr>
</tbody>
</table>
19.1c. $SU(2)$ is Topologically the 3-Sphere 495
19.1d. $Ad : SU(2) \to SO(3)$ in More Detail 496
19.2. Hamilton, Clifford, and Dirac 497
19.2a. Spinors and Rotations of \mathbb{R}^3 497
19.2b. Hamilton on Composing Two Rotations 499
19.2c. Clifford Algebras 500
19.2d. The Dirac Program: The Square Root of the d’Alembertian 502
19.3. The Dirac Algebra 504
19.3a. The Lorentz Group 504
19.3b. The Dirac Algebra 509
19.4. The Dirac Operator $\slashed{\partial}$ in Minkowski Space 511
19.4a. Dirac Spinors 511
19.4b. The Dirac Operator 513
19.5. The Dirac Operator in Curved Space–Time 515
19.5a. The Spinor Bundle 515
19.5b. The Spin Connection in ΣM 518

20. Yang–Mills Fields 523
20.1. Noether’s Theorem for Internal Symmetries 523
20.1a. The Tensorial Nature of Lagrange’s Equations 523
20.1b. Boundary Conditions 526
20.1c. Noether’s Theorem for Internal Symmetries 527
20.1d. Noether’s Principle 528
20.2. Weyl’s Gauge Invariance Revisited 531
20.2a. The Dirac Lagrangian 531
20.2b. Weyl’s Gauge Invariance Revisited 533
20.2c. The Electromagnetic Lagrangian 534
20.2d. Quantization of the A Field: Photons 536
20.3. The Yang–Mills Nucleon 537
20.3a. The Heisenberg Nucleon 537
20.3b. The Yang–Mills Nucleon 538
20.3c. A Remark on Terminology 540
20.4. Compact Groups and Yang–Mills Action 541
20.4a. The Unitary Group Is Compact 541
20.4b. Averaging over a Compact Group 541
20.4c. Compact Matrix Groups Are Subgroups of Unitary Groups 542
20.4d. Ad Invariant Scalar Products in the Lie Algebra of a Compact Group 543
20.4e. The Yang–Mills Action 544
20.5. The Yang–Mills Equation 545
20.5a. The Exterior Covariant Divergence ∇^* 545
20.5b. The Yang–Mills Analogy with Electromagnetism 547
20.5c. Further Remarks on the Yang–Mills Equations 548
CONTENTS

20.6. Yang–Mills Instantons 550
20.6a. Instantons 550
20.6b. Chern’s Proof Revisited 553
20.6c. Instantons and the Vacuum 557

21 Betti Numbers and Covering Spaces 561
21.1. Bi-invariant Forms on Compact Groups 561
21.1a. Bi-invariant \(p \)-Forms 561
21.1b. The Cartan \(p \)-Forms 562
21.1c. Bi-invariant Riemannian Metrics 563
21.1d. Harmonic Forms in the Bi-invariant Metric 564
21.1e. Weyl and Cartan on the Betti Numbers of \(G \) 565

21.2. The Fundamental Group and Covering Spaces 567
21.2a. Poincaré’s Fundamental Group \(\pi_1(M) \) 567
21.2b. The Concept of a Covering Space 569
21.2c. The Universal Covering 570
21.2d. The Orientable Covering 573
21.2e. Lifting Paths 574
21.2f. Subgroups of \(\pi_1(M) \) 575
21.2g. The Universal Covering Group 575

21.3. The Theorem of S. B. Myers: A Problem Set 576

21.4. The Geometry of a Lie Group 580
21.4a. The Connection of a Bi-invariant Metric 580
21.4b. The Flat Connections 581

22 Chern Forms and Homotopy Groups 583
22.1. Chern Forms and Winding Numbers 583
22.1a. The Yang–Mills “Winding Number” 583
22.1b. Winding Number in Terms of Field Strength 585
22.1c. The Chern Forms for a \(U(n) \) Bundle 587

22.2. Homotopies and Extensions 591
22.2a. Homotopy 591
22.2b. Covering Homotopy 592
22.2c. Some Topology of \(SU(n) \) 594

22.3. The Higher Homotopy Groups \(\pi_k(M) \) 596
22.3a. \(\pi_k(M) \) 596
22.3b. Homotopy Groups of Spheres 597
22.3c. Exact Sequences of Groups 598
22.3d. The Homotopy Sequence of a Bundle 600
22.3e. The Relation Between Homotopy and Homology Groups 603

22.4. Some Computations of Homotopy Groups 605
22.4a. Lifting Spheres from \(M \) into the Bundle \(P \) 605
22.4b. \(SU(n) \) Again 606
22.4c. The Hopf Map and Fibering 606
CONTENTS

22.5. Chern Forms as Obstructions
 - 22.5a. The Chern Forms c_r for an $SU(n)$ Bundle Revisited
 - 22.5b. c_2 as an “Obstruction Cocycle”
 - 22.5c. The Meaning of the Integer $j(\Delta_4)$
 - 22.5d. Chern’s Integral
 - 22.5e. Concluding Remarks

Appendix A. Forms in Continuum Mechanics
 - A.a. The Equations of Motion of a Stressed Body
 - A.b. Stresses are Vector Valued $(n - 1)$ Pseudo-Forms
 - A.d. Strain Energy Rate
 - A.e. Some Typical Computations Using Forms
 - A.f. Concluding Remarks

Appendix B. Harmonic Chains and Kirchhoff’s Circuit Laws
 - B.a. Chain Complexes
 - B.b. Cochains and Cohomology
 - B.c. Transpose and Adjoint
 - B.d. Laplacians and Harmonic Cochains
 - B.e. Kirchhoff’s Circuit Laws

Appendix C. Symmetries, Quarks, and Meson Masses
 - C.a. Flavored Quarks
 - C.b. Interactions of Quarks and Antiquarks
 - C.c. The Lie Algebra of $SU(3)$
 - C.d. Pions, Kaons, and Etas
 - C.e. A Reduced Symmetry Group
 - C.f. Meson Masses

Appendix D. Representations and Hyperelastic Bodies
 - D.a. Hyperelastic Bodies
 - D.b. Isotropic Bodies
 - D.c. Application of Schur’s Lemma
 - D.d. Frobenius–Schur Relations
 - D.e. The Symmetric Traceless 3×3 Matrices Are Irreducible

Appendix E. Orbits and Morse–Bott Theory in Compact Lie Groups
 - E.a. The Topology of Conjugacy Orbits
 - E.b. Application of Bott’s Extension of Morse Theory

References

Index
Preface to the Third Edition

A main addition introduced in this third edition is the inclusion of an Overview

An Informal Overview of Cartan's Exterior Differential Forms,
Illustrated with an Application to Cauchy's Stress Tensor

which can be read before starting the text. This appears at the beginning of the text, before Chapter 1. The only prerequisites for reading this overview are sophomore courses in calculus and basic linear algebra. Many of the geometric concepts developed in the text are previewed here and these are illustrated by their applications to a single extended problem in engineering, namely the study of the Cauchy stresses created by a small twist of an elastic cylindrical rod about its axis.

The new shortened version of Appendix A, dealing with elasticity, requires the discussion of Cauchy stresses dealt with in the Overview. The author believes that the use of Cartan’s vector valued exterior forms in elasticity is more suitable (both in principle and in computations) than the classical tensor analysis usually employed in engineering (which is also developed in the text.)

The new version of Appendix A also contains contributions by my engineering colleague Professor Hidenori Murakami, including his treatment of the Truesdell stress rate. I am also very grateful to Professor Murakami for many very helpful conversations.
Preface to the Second Edition

This second edition differs mainly in the addition of three new appendices: C, D, and E. Appendices C and D are applications of the elements of representation theory of compact Lie groups.

Appendix C deals with applications to the flavored quark model that revolutionized particle physics. We illustrate how certain observed mesons (pions, kaons, and etas) are described in terms of quarks and how one can “derive” the mass formula of Gell-Mann/Okubo of 1962. This can be read after Section 20.3b.

Appendix D is concerned with isotropic hyperelastic bodies. Here the main result has been used by engineers since the 1850s. My purpose for presenting proofs is that the hypotheses of the Frobenius–Schur theorems of group representations are exactly met here, and so this affords a compelling excuse for developing representation theory, which had not been addressed in the earlier edition. An added bonus is that the group theoretical material is applied to the three-dimensional rotation group $SO(3)$, where these generalities can be pictured explicitly. This material can essentially be read after Appendix A, but some brief excursion into Appendix C might be helpful.

Appendix E delves deeper into the geometry and topology of compact Lie groups. Bott’s extension of the presentation of Morse theory that was given in Section 14.3c is sketched and the example of the topology of the Lie group $U(3)$ is worked out in some detail.
Preface to the Revised Printing

In this reprinting I have introduced a new appendix, Appendix B, Harmonic Chains and Kirchhoff’s Circuit Laws. This appendix deals with a finite-dimensional version of Hodge’s theory, the subject of Chapter 14, and can be read at any time after Chapter 13. It includes a more geometrical view of cohomology, dealt with entirely by matrices and elementary linear algebra. A bonus of this viewpoint is a systematic “geometrical” description of the Kirchhoff laws and their applications to direct current circuits, first considered from roughly this viewpoint by Hermann Weyl in 1923.

I have corrected a number of errors and misprints, many of which were kindly brought to my attention by Professor Friedrich Heyl.

Finally, I would like to take this opportunity to express my great appreciation to my editor, Dr. Alan Harvey of Cambridge University Press.
Preface to the First Edition

The basic ideas at the foundations of point and continuum mechanics, electromagnetism, thermodynamics, special and general relativity, and gauge theories are geometrical, and, I believe, should be approached, by both mathematics and physics students, from this point of view.

This is a textbook that develops some of the geometrical concepts and tools that are helpful in understanding classical and modern physics and engineering. The mathematical subject material is essentially that found in a first-year graduate course in differential geometry. This is not coincidental, for the founders of this part of geometry, among them Euler, Gauss, Jacobi, Riemann and Poincaré, were also profoundly interested in "natural philosophy."

Electromagnetism and fluid flow involve line, surface, and volume integrals. Analytical dynamics brings in multidimensional versions of these objects. In this book these topics are discussed in terms of exterior differential forms. One also needs to differentiate such integrals with respect to time, especially when the domains of integration are changing (circulation, vorticity, helicity, Faraday’s law, etc.), and this is accomplished most naturally with aid of the Lie derivative. Analytical dynamics, thermodynamics, and robotics in engineering deal with constraints, including the puzzling nonholonomic ones, and these are dealt with here via the so-called Frobenius theorem on differential forms. All these matters, and more, are considered in Part One of this book.

Einstein created the astonishing principle field strength = curvature to explain the gravitational field, but if one is not familiar with the classical meaning of surface curvature in ordinary 3-space this is merely a tautology. Consequently I introduce differential geometry before discussing general relativity. Cartan’s version, in terms of exterior differential forms, plays a central role. Differential geometry has applications to more down-to-earth subjects, such as soap bubbles and periodic motions of dynamical systems. Differential geometry occupies the bulk of Part Two.

Einstein’s principle has been extended by physicists, and now all the field strengths occurring in elementary particle physics (which are required in order to construct a
Lagrangian) are discussed in terms of curvature and connections, but it is the curvature of a vector bundle, that is, the field space, that arises, not the curvature of spacetime. The symmetries of the quantum field play an essential role in these gauge theories, as was first emphasized by Hermann Weyl, and these are understood today in terms of Lie groups, which are an essential ingredient of the vector bundle. Since many quantum situations (charged particles in an electromagnetic field, Aharonov–Bohm effect, Dirac monopoles, Berry phase, Yang–Mills fields, instantons, etc.) have analogues in elementary differential geometry, we can use the geometric methods and pictures of Part Two as a guide; a picture is worth a thousand words! These topics are discussed in Part Three.

Topology is playing an increasing role in physics. A physical problem is “well posed” if there exists a solution and it is unique, and the topology of the configuration (spherical, toroidal, etc.), in particular the singular homology groups, has an essential influence. The Brouwer degree, the Hurewicz homotopy groups, and Morse theory play roles not only in modern gauge theories but also, for example, in the theory of “defects” in materials.

Topological methods are playing an important role in field theory; versions of the Atiyah–Singer index theorem are frequently invoked. Although I do not develop this theorem in general, I do discuss at length the most famous and elementary example, the Gauss–Bonnet–Poincaré theorem, in two dimensions and also the meaning of the Chern characteristic classes. These matters are discussed in Parts Two and Three.

The Appendix to this book presents a nontraditional treatment of the stress tensors appearing in continuum mechanics, utilizing exterior forms. In this endeavor I am greatly indebted to my engineering colleague Hidenori Murakami. In particular Murakami has supplied, in Section g of the Appendix, some typical computations involving stresses and strains, but carried out with the machinery developed in this book. We believe that these computations indicate the efficiency of the use of forms and Lie derivatives in elasticity. The material of this Appendix could be read, except for some minor points, after Section 9.5.

Mathematical applications to physics occur in at least two aspects. Mathematics is of course the principal tool for solving technical analytical problems, but increasingly it is also a principal guide in our understanding of the basic structure and concepts involved. Analytical computations with elliptic functions are important for certain technical problems in rigid body dynamics, but one could not have begun to understand the dynamics before Euler’s introducing the moment of inertia tensor. I am very much concerned with the basic concepts in physics. A glance at the Contents will show in detail what mathematical and physical tools are being developed, but frequently physical applications appear also in Exercises. My main philosophy has been to attack physical topics as soon as possible, but only after effective mathematical tools have been introduced. By analogy, one can deal with problems of velocity and acceleration after having learned the definition of the derivative as the limit of a quotient (or even before, as in the case of Newton), but we all know how important the machinery of calculus (e.g., the power, product, quotient, and chain rules) is for handling specific problems. In the same way, it is a mistake to talk seriously about thermodynamics
before understanding that a total differential equation in more than two dimensions need not possess an integrating factor.

In a sense this book is a “final” revision of sets of notes for a year course that I have given in La Jolla over many years. My goal has been to give the reader a working knowledge of the tools that are of great value in geometry and physics and (increasingly) engineering. For this it is absolutely essential that the reader work (or at least attempt) the Exercises. Most of the problems are simple and require simple calculations. If you find calculations becoming unmanageable, then in all probability you are not taking advantage of the machinery developed in this book.

This book is intended primarily for two audiences, first, the physics or engineering student, and second, the mathematics student. My classes in the past have been populated mostly by first-, second-, and third-year graduate students in physics, but there have also been mathematics students and undergraduates. The only real mathematical prerequisites are basic linear algebra and some familiarity with calculus of several variables. Most students (in the United States) have these by the beginning of the third undergraduate year.

All of the physical subjects, with two exceptions to be noted, are preceded by a brief introduction. The two exceptions are analytical dynamics and the quantum aspects of gauge theories.

Analytical (Hamiltonian) dynamics appears as a problem set in Part One, with very little motivation, for the following reason: the problems form an ideal application of exterior forms and Lie derivatives and involve no knowledge of physics. Only in Part Two, after geodesics have been discussed, do we return for a discussion of analytical dynamics from first principles. (Of course most physics and engineering students will already have seen some introduction to analytical mechanics in their course work anyway.) The significance of the Lagrangian (based on special relativity) is discussed in Section 16.4 of Part Three when changes in dynamics are required for discussing the effects of electromagnetism.

An introduction to quantum mechanics would have taken us too far afield. Fortunately (for me) only the simplest quantum ideas are needed for most of our discussions. I would refer the reader to Rabin’s article [R] and Sudbery’s book [Su] for excellent introductions to the quantum aspects involved.

Physics and engineering readers would profit greatly if they would form the habit of translating the vectorial and tensorial statements found in their customary reading of physics articles and books into the language developed in this book, and using the newer methods developed here in their own thinking. (By “newer” I mean methods developed over the last one hundred years!)

As for the mathematics student, I feel that this book gives an overview of a large portion of differential geometry and topology that should be helpful to the mathematics graduate student in this age of very specialized texts and absolute rigor. The student preparing to specialize, say, in differential geometry will need to augment this reading with a more rigorous treatment of some of the subjects than that given here (e.g., in Warner’s book [Wa] or the five-volume series by Spivak [Sp]). The mathematics student should also have exercises devoted to showing what can go wrong if hypotheses are weakened. I make no pretense of worrying, for example, about the differentiability
classes of mappings needed in proofs. (Such matters are studied more carefully in the book [A, M, R] and in the encyclopedia article [T, T]. This latter article (and the accompanying one by Eriksen) are also excellent for questions of historical priorities.) I hope that mathematics students will enjoy the discussions of the physical subjects even if they know very little physics; after all, physics is the source of interesting vector fields. Many of the “physical” applications are useful even if they are thought of as simply giving explicit examples of rather abstract concepts. For example, Dirac’s equation in curved space can be considered as a nontrivial application of the method of connections in associated bundles!

This is an introduction and there is much important mathematics that is not developed here. Analytical questions involving existence theorems in partial differential equations, Sobolev spaces, and so on, are missing. Although complex manifolds are defined, there is no discussion of Kaehler manifolds nor the algebraic–geometric notions used in string theory. Infinite dimensional manifolds are not considered. On the physical side, topics are introduced usually only if I felt that geometrical ideas would be a great help in their understanding or in computations.

I have included a small list of references. Most of the articles and books listed have been referred to in this book for specific details. The reader will find that there are many good books on the subject of “geometrical physics” that are not referred to here, primarily because I felt that the development, or sophistication, or notation used was sufficiently different to lead to, perhaps, more confusion than help in the first stages of their struggle. A book that I feel is in very much the same spirit as my own is that by Nash and Sen [N, S]. The standard reference for differential geometry is the two-volume work [K, N] of Kobayashi and Nomizu.

Almost every section of this book begins with a question or a quotation which may concern anything from the main thrust of the section to some small remark that should not be overlooked.

A term being defined will usually appear in bold type.

I wish to express my gratitude to Harley Flanders, who introduced me long ago to exterior forms and de Rham’s theorem, whose superb book [Fl] was perhaps the first to awaken scientists to the use of exterior forms in their work. I am indebted to my chemical colleague John Wheeler for conversations on thermodynamics and to Donald Fredkin for helpful criticisms of earlier versions of my lecture notes. I have already expressed my deep gratitude to Hidenori Murakami. Joel Broida made many comments on earlier versions, and also prevented my Macintosh from taking me over. I’ve had many helpful conversations with Bruce Driver, Jay Fillmore, and Michael Freedman. Poul Hjorth made many helpful comments on various drafts and also served as “beater,” herding physics students into my course. Above all, my colleague Jeff Rabin used my notes as the text in a one-year graduate course and made many suggestions and corrections. I have also included corrections to the 1997 printing, following helpful remarks from Professor Meinhard Mayer.

Finally I am grateful to the many students in my classes on geometrical physics for their encouragement and enthusiasm in my endeavor. Of course none of the above is responsible for whatever inaccuracies undoubtedly remain.
An Informal Overview of Cartan’s Exterior Differential Forms, Illustrated with an Application to Cauchy’s Stress Tensor

Introduction

My goal in this overview is to introduce exterior calculus in a brief and informal way that leads directly to their use in engineering and physics, both in basic physical concepts and in specific engineering calculations. The presentation will be very informal. Many times a proof will be omitted so that we can get quickly to a calculation. In some “proofs” we shall look only at a typical term.

The chief mathematical prerequisites for this overview are sophomore courses dealing with basic linear algebra, partial derivatives, multiple integrals, and tangent vectors to parameterized curves, but not necessarily “vector calculus,” i.e., curls, divergences, line and surface integrals, Stokes’ theorem, These last topics will be sketched here using Cartan’s “exterior calculus.”

We shall take advantage of the fact that most engineers live in euclidean 3-space \mathbb{R}^3 with its everyday metric structure, but we shall try to use methods that make sense in much more general situations. Instead of including exercises we shall consider, in the section Elasticity and Stresses, one main example and illustrate everything in terms of this example but hopefully the general principles will be clear. This engineering example will be the following. Take an elastic circular cylindrical rod of radius a and length L, described in cylindrical coordinates r, θ, z, with the ends of the cylinder at $z = 0$ and $z = L$. Look at this same cylinder except that it has been axially twisted through an angle kz proportional to the distance z from the fixed end $z = 0$.

\[(r, \theta, z) \rightarrow (r, \theta + k\epsilon, z) \]
We shall neglect gravity and investigate the stresses in the cylinder in its final twisted state, in the first approximation, i.e., where we put $k^2 = 0$. Since “stress” and “strain” are “tensors” (as Cauchy and I will show) this is classically treated via “tensor analysis.” The final equilibrium state involves surface integrals and the tensor divergence of the Cauchy stress tensor. Our main tool will not be the usual classical tensor analysis (Christoffel symbols Γ^i_{jk}, etc.) but rather exterior differential forms (first used in the nineteenth century by Grassmann, Poincaré, Volterra, . . . , and developed especially by Elie Cartan), which, I believe, is a far more appropriate tool.

We are very much at home with cartesian coordinates but curvilinear coordinates play a very important role in physical applications, and the fact that there are two distinct types of vectors that arise in curvilinear coordinates (and, even more so, in curved spaces) that appear identical in cartesian coordinates must be understood, not only when making calculations but also in our understanding of the basic ingredients of the physical world. We shall let x^i, and u^i, $i = 1, 2, 3$, be general (curvilinear) coordinates, in euclidean 3 dimensional space \mathbb{R}^3. If cartesian coordinates are wanted, I will say so explicitly.

Vectors, 1-Forms, and Tensors

c.b. Two Kinds of Vectors

There are two kinds of vectors that appear in physical applications and it is important that we distinguish between them. First there is the familiar “arrow” version.

Consider n dimensional euclidean space \mathbb{R}^n with cartesian coordinates x^1, \ldots, x^n and local (perhaps curvilinear) coordinates u^1, \ldots, u^n.

Example: \mathbb{R}^2 with cartesian coordinates $x^1 = x$, $x^2 = y$, and with polar coordinates $u^1 = r$, $u^2 = \theta$.

Example: \mathbb{R}^3 with cartesian coordinates x, y, z and with cylindrical coordinates R, Θ, Z.

Let p be the position vector from the origin of \mathbb{R}^n to the point p. In the curvilinear coordinate system u, the coordinate curve C_i through the point p is the curve where all