CONTENTS

<table>
<thead>
<tr>
<th>Preface to the Fourth Edition</th>
<th>page xii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
</tr>
<tr>
<td>Note on names of plants</td>
<td>xiv</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 Investigating plant variation and evolution
- Ray and the definition of species 4
- The Great Chain of Being 5
- Linnaeus 6
- Buffon and Lamarck 10
- Darwin 11
- Tests of specific difference 21

2 From Ray to Darwin
- Biometrics and eugenics 23
- Commonest occurring variation in an array 25
- Estimates of dispersion of the data 26
- Histograms, frequency diagrams and the normal distribution curve 27
- Other types of distribution 28
- Comparison of different arrays of data 28
- Complex distributions 29
- Local races 32
- Correlated variation 33
- Problems of biometry 35

3 Early work on biometry
- Biometrics and eugenics 23
- Biometrical studies of plants 24
- Commonest occurring variation in an array 25
- Estimates of dispersion of the data 26
- Histograms, frequency diagrams and the normal distribution curve 27
- Other types of distribution 28
- Comparison of different arrays of data 28
- Complex distributions 29
- Local races 32
- Correlated variation 33
- Problems of biometry 35

4 Early work on the basis of individual variation
- Phenotype and genotype 38
- Transplant experiments 39
- Mendel’s experiments 41
- Pangeneses 46
- Mendelian ratios in plants 47

5 Post-Darwinian ideas about evolution
- Experimental investigation of evolution 67
- The mutation theory of evolution 70
- The Evolutionary Synthesis 71
- Elements of the New Synthesis 71
- Coda 73

6 DNA: towards an understanding of heredity and molecular evolution
- DNA: its structure and properties 74
- Replication of DNA 75
- Transcription and translation of genetic information 76
- Mutation of DNA 78
- Exchanges of DNA segments 79
- Gene silencing: epigenetic modification of DNA 79
- The plant cell: adaptive, neutral and junk DNA 81
- DNA in the nucleus 82
- Centromeres 83
- Telomeres 83
- B chromosomes 83
- The concept of junk DNA revisited 84
DNA in plant cells: mitochondria and chloroplasts 85
Evolutionary changes in the chloroplast structure 86
Genetics of chloroplasts and mitochondria 86
Arabidopsis thaliana: its role as a model species 86
Studying developmental processes: the role of model plants 88
Phylogenetic studies 89
Common origin to life on Earth 89
Advances in comparative genomics 90
Palaeopolyploidy and chromosomal changes 92
Duplicated genes 92
Techniques for studying genetic variation 93
Selecting marker systems to test hypotheses 95
Concluding remarks 96

7 Breeding systems 98
A. The different breeding systems found in flowering plants 98
 Outbreeding 98
 Molecular studies of self-incompatibility systems 102
 Homomorphic and heteromorphic incompatibility systems 103
 Late-acting self-incompatibility systems 104
 Self-fertilisation 105
 Apomixis 106
 Agamospermy 107
 Apomictic phenomena 108
 Embryology of apomixis 109
 Apomictic behaviour 111
 Diplospory 111
 Apospory 111
 The role of pollen in the evolution of apomictic plants 112
 Genetics of apomixis 113
 Molecular nature and origin of apomixis 113
 Some dogmas about seed apomixis 114
B. Breeding behaviour discovered in studies of wild populations 114
 Consequences of different reproductive modes 114
 Advantages and disadvantages of different breeding systems 116
 Reproductive assurance and the genetic 'quality' of progeny 118
 Breeding systems in wild populations 119
 Outbreeding combined with vegetative reproduction 119
 Outbreeding in association with vivipary 119
 Outbreeding combined with occasional self-fertilisation 120
 Outbreeding combined with regular self-fertilisation 121
 Mixed reproduction: selfing and outcrossing in different proportions 122
 Facultative and obligatory apomixis 124
 Environmental control of facultative apomixis 125
C. Evolution of breeding systems 126
 Some concluding remarks 132

8 Intraspecific variation and the ecotype concept 135
 Turesson's pioneer studies and other experiments 135
 Experiments by American botanists 139
 The widespread occurrence of ecotypes 144
 Clines 144
 Factors influencing the variation pattern 147
 The refining of geneecological experiments 147
 Sampling populations 148
 Cultivation experiments 151
 The designed experiment 154
 The interpretation of experiments 159

9 Pattern and process in plant populations 160
 Variation within and between populations 161
 Selection in populations 161
 Selection in changing populations: r- and K-selection 164
 Fitness 165
 Developments in the investigation of populations 165
 Selection: the study of single factors 166
 Studies of several interacting factors: Lotus and Trifolium 166
Distribution of cyanogenic variants 168
The role of herbivory 168
Small-scale influences on patterns and process in cyanogenic species 172
Reciprocal transplant experiments 173
Experimental evidence for disruptive selection 173
Comparing ‘young’ and ‘adult’ generations 176
Co-selection in swards 177
The speed of microevolutionary change: agricultural experiments 177
Rapid change in polluted sites 178
Origin of metal-tolerant populations 181
Hyperaccumulation 182
Serpentine ecotypes 183
 Sulphur dioxide tolerance 184
Ozone tolerance 184
Evolution in arable areas 185
Herbicide resistance 186
Weed evolution 188
Ecotypic variation in response to seasonal or irregular extreme habitat factors 188
Phenotypic modification and genetic differentiation 189
The use of model plants in the study of microevolution 190
Detecting the signature of selection from genomic studies 190
Studies of local adaptation involving cultivation experiments 191
Combined studies of crucial life cycle traits 192
Arabidopsis: experiments on phenotypic plasticity 193
Adaptive and non-adaptive characters 196
Concluding remarks 199

10 Pattern and process: factors interacting with natural selection 201
Chance has profound effects 201
Gene flow: population variability and structure 201
Gene flow: early ideas 202
Gene flow: agricultural experiments 203
Gene flow: historic insights from the movement of pollen 203
Gene flow: historic studies of seed dispersal 205
‘Neighbourhoods’ in wild populations 206
Gene flow: studies using molecular tools 207
Gene flow: insights from the use of microsatellite markers 208
Gene flow by pollen movement 210
Animal-pollinated trees and shrubs 211
Seed/fruit dispersal 212
Recent insights into gene flow from the study of transgenic crop plants 212
Knowledge of gene flow is critical in plant conservation 214
Gene flow: future directions of research 215

11 Populations: origins and extinctions 216
Metapopulations 216
Founding events and bottleneck effects 217
Designing experiments 218
Case histories of founder events 218
Founder effects in weedy and ornamental species 219
Tracing the origin and spread of new populations 220
Identification of sources of introduced taxa 220
Once introduced, some species fail to establish 222
Development of populations: the lag phase 222
Changes in populations following introduction 223
Phenotypic plasticity and developmental adaptability 223
What factors contribute to the success of new populations? 226
Population persistence and stability: clonal growth 228
Size and longevity of clones: new insights using molecular markers 229
Implications of clonal growth in populations 229
Another major factor influencing population persistence: seed banks 232
Processes involved in the extinction of populations 233
Demographic stochasticity 233
Pollen limitation causes an Allee Effect 235
Effects of fragmentation 236
Genetics of small populations 237
Minimum viable populations 239
Concluding comments 240
12 Species and speciation: concepts and models 242
 The morphological species concept 242
 Species definitions: taking into account pattern and process 243
 The Evolutionary Species Concept 243
 Phylogenetic (cladistic) species concept 243
 Ecological species concept 243
 The Biological Species Concept 243
 Origins of species 245
 Gradual (Geographic) Speciation 246
 Abrupt speciation 246
 Polyploidy 246

13 Allopatric speciation and hybridisation 250
 Evidence for gradual speciation 251
 Crossing experiment with species of Layia 252
 The interpretation of crossing experiments 252
 Studies of Layia using molecular methods 254
 Phylogenetic studies of the Californian Tarweeds 255
 Speciation genes 255
 Pre-pollination mechanisms 256
 Post-pollination barriers 256
 Cytoplasmic male sterility: its possible role in speciation in plants 257
 Genomic changes involved in speciation 258
 Future prospects for the study of speciation genes and genomic architecture 258
 Allopatric speciation and the taxonomist 259
 Natural hybridisation 260
 Natural hybridisation in the wild: classic studies 260
 The consequences of hybridisation: some theoretical considerations 264
 Empirical studies of reinforcement 266
 The emergence of the concept of introgressive hybridisation 270
 Introgression: classic approaches championed by Anderson 271
 Genetic investigations of hybridisation 274
 Chemotaxy: historic investigations of hybridisation 275
 Critical tests of the hypothesis of introgression 276
 Studies of introgression using molecular tools 276
 Introgression in Louisiana Irises 278
 Asymmetric introgression 279
 Cytoplasmic capture 282
 Chloroplast capture: another route 283
 Transgressive hybridisation 283
 Can it be confirmed that adaptive traits are transferred from one species to another by introgression? 283
 Speciation: where future advances might come 284
 The role of hitchhiking in speciation 284
 Next generation sequencing technologies 285
 Zones of introgression: are they ephemeral or long-standing? 285
 Introgression: a key concept in microevolution 285
 Taxonomic considerations 286
 Introgression: its role in evolution 286

14 Abrupt speciation 287
 A. The emergence and testing of key concepts in the study of polyploidy 287
 The concept of polyploidy: early cytogenetic studies 287
 Resynthesis of wild polyploids 288
 The concepts of auto- and allopolyploidy 289
 The concept of genome analysis 291
 Genome analysis: uncertainties about ancestry 292
 Genetic control of chromosome pairing: the implications for genome analysis 294
 Studies of karyotypes 295
 Chemical studies 296
 In situ hybridisation (ISH) 297
 B. Recent insights into polyploidy from molecular studies 302
 Key questions about polyploidy and its significance 302
 How many species are polyploid? 302
 The delimitation of taxa within polyploid groups 302
 Chromosome counts provide insights into the incidence of polyploidy 303
 Historic estimates of the incidence of polyploidy 303
 Evidence from fossil plants 304
 Genetic evidence 304
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyploidy in other plant groups</td>
<td>305</td>
</tr>
<tr>
<td>The origin of new polyploids: the role of somatic events and unreduced gametes</td>
<td>305</td>
</tr>
<tr>
<td>Unreduced gametes: major insights from the studies of molecular genetics</td>
<td>306</td>
</tr>
<tr>
<td>Relative frequency of auto- and allopolyploidy</td>
<td>307</td>
</tr>
<tr>
<td>Unreduced gametes: is polyhaploidy important in plant evolution?</td>
<td>307</td>
</tr>
<tr>
<td>Polyploids: their potential for evolutionary change</td>
<td>307</td>
</tr>
<tr>
<td>Meiosis in polyploids</td>
<td>308</td>
</tr>
<tr>
<td>Evidence for structural changes in polyploids</td>
<td>309</td>
</tr>
<tr>
<td>Gene silencing: epigenetic alterations in gene expression</td>
<td>310</td>
</tr>
<tr>
<td>Transposable elements</td>
<td>311</td>
</tr>
<tr>
<td>Polyploids: the implications of their recurrent formation</td>
<td>311</td>
</tr>
<tr>
<td>Polyploids: cytogenetic changes in the longer term</td>
<td>311</td>
</tr>
<tr>
<td>Becoming established: what ‘hurdles’ do polyploids face?</td>
<td>312</td>
</tr>
<tr>
<td>Characteristics of polyploids as a group</td>
<td>313</td>
</tr>
<tr>
<td>Polyploids: ecological considerations</td>
<td>313</td>
</tr>
<tr>
<td>Polyploidy is often associated with a change in the breeding system</td>
<td>313</td>
</tr>
<tr>
<td>Evidence for hybridisation between diploid and polyploid plants in the wild</td>
<td>316</td>
</tr>
<tr>
<td>Reticulate patterns of variation in some groups</td>
<td>318</td>
</tr>
<tr>
<td>Are polyploids more frequent in particular geographical areas?</td>
<td>318</td>
</tr>
<tr>
<td>Current views on the present-day distribution of polyploids</td>
<td>321</td>
</tr>
<tr>
<td>The implications of ancient polyploidy for studies of geographical distributions</td>
<td>321</td>
</tr>
</tbody>
</table>

C. Other modes of abrupt speciation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in chromosome number</td>
<td>322</td>
</tr>
<tr>
<td>Nested chromosome insertion</td>
<td>326</td>
</tr>
<tr>
<td>Plants with diffuse centromeres</td>
<td>326</td>
</tr>
<tr>
<td>Speciation following hybridisation: homoploid speciation</td>
<td>327</td>
</tr>
<tr>
<td>Minority disadvantage</td>
<td>328</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>329</td>
</tr>
</tbody>
</table>

15 The species concept

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species as part of natural classifications</td>
<td>331</td>
</tr>
<tr>
<td>Mental reality of species</td>
<td>332</td>
</tr>
<tr>
<td>Do species have evolutionary reality?</td>
<td>333</td>
</tr>
<tr>
<td>The Biological Species Concept</td>
<td>333</td>
</tr>
<tr>
<td>The views of botanical taxonomists</td>
<td>334</td>
</tr>
<tr>
<td>Different definitions of species</td>
<td>335</td>
</tr>
</tbody>
</table>

16 Flowering plant evolution: advances, challenges and prospects

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The devising of phylogenetic trees</td>
<td>336</td>
</tr>
<tr>
<td>Classifications</td>
<td>336</td>
</tr>
<tr>
<td>Weighting characters</td>
<td>338</td>
</tr>
<tr>
<td>Numerical taxonomy</td>
<td>340</td>
</tr>
<tr>
<td>The influence of numerical taxonomy</td>
<td>341</td>
</tr>
<tr>
<td>Cladistics</td>
<td>342</td>
</tr>
<tr>
<td>Molecular phylogenetic analysis</td>
<td>344</td>
</tr>
<tr>
<td>Generation and analysis of molecular sequence data</td>
<td>346</td>
</tr>
<tr>
<td>Cladograms</td>
<td>346</td>
</tr>
<tr>
<td>The findings of molecular systematics</td>
<td>349</td>
</tr>
<tr>
<td>Layout of trees</td>
<td>350</td>
</tr>
<tr>
<td>Angiosperm phylogeny</td>
<td>351</td>
</tr>
<tr>
<td>Mapping additional information onto phylogenetic trees</td>
<td>353</td>
</tr>
<tr>
<td>Insights into evolutionary relationships provided by molecular phylogenetic studies</td>
<td>355</td>
</tr>
<tr>
<td>Timescales and timetrees: the role of fossils and molecular clocks</td>
<td>359</td>
</tr>
<tr>
<td>Universal or local clocks?</td>
<td>359</td>
</tr>
<tr>
<td>Origin and age of the Angiosperms</td>
<td>360</td>
</tr>
<tr>
<td>Floral evolution</td>
<td>362</td>
</tr>
<tr>
<td>Molecular genetics of floral evolution</td>
<td>363</td>
</tr>
<tr>
<td>The metaphor of the Tree of Life: its strengths and weaknesses</td>
<td>366</td>
</tr>
<tr>
<td>How far do phylogenetic trees reveal the course of evolution?</td>
<td>366</td>
</tr>
<tr>
<td>Plant evolution: limitations of the Tree of Life metaphor</td>
<td>370</td>
</tr>
<tr>
<td>Angiosperm evolution: what role for saltational change?</td>
<td>371</td>
</tr>
<tr>
<td>Constraints in evolution</td>
<td>375</td>
</tr>
<tr>
<td>Genome sequencing: prospects for further insights into phylogeny</td>
<td>375</td>
</tr>
</tbody>
</table>
Classification and the Tree of Life 376
Traditional taxonomy, cladism and molecular systematics 378

17 Historical biogeography 382
The Deluge and Noah’s Ark 382
The Deluge and plant distribution 382
Eighteenth- and nineteenth-century investigations of plant geography 383
Long-range dispersal: early investigations 383
Land bridges: historic ideas 384
Continental drift 384
Pangaea and the geographical origin of the angiosperms 385
Ancient extinctions 386
The K–T extinction 387
The Pleistocene 391
Advances in plate tectonics on the interpretation of plant distributions 392
Modern phyogeographical investigations of plant distributions 393
Factors considered in modelling 394
Long-range dispersal: new insights 395
Single and recurrent long-range dispersal 396
Evidence for back colonisation 397
From which source(s) did long-distance migrants originate? 397
Disjunctions: long-distance dispersal or vicariance? 398
The investigation of ‘divergence times’ for taxa 399
Mediterranean island endemics: dating and ancestral area reconstruction 400
Phylogenetic studies of the opening of a land bridge 400
Migration: implications of specialisation 400
Quaternary Ice Ages: plant survival, migration and extinction 401
Refugia in different parts of the world 404
Implications of refuges 404
Migration from refuges 405
The refugial hypothesis of Amazonian speciation 407
Palaeoecology: insights from the study of ancient DNA 407
Multidisciplinary approaches in biogeography: two case histories 408
Concluding remarks 409

18 The evolutionary impact of human activities 411
Humans: as animals practising extreme niche construction 411
Human impact on the environment 411
The evolutionary effects of human activities 412
Assessing human impacts on ecosystems: sources of evidence 412
From natural ecosystems to cultural landscapes 413
The extent of human-modified ecosystems 414
Plants: their different roles on the cultural landscape stage 416
Interactions between plants 418
Do human activities present threats to biodiversity? 419
Human influences: habitat loss and fragmentation 419
Human influences: introduced organisms 420
The ecological consequences of introduced species 422
Human influences: the effects of pollution 422
Eutrophication 423
Acid Rain 423
Human influences: global climate change 424
The Greenhouse Effect 424
Direct observation of climate change 425
Predictions of future climate change 425
Climate change: human influences 426
Climate change sceptics and deniers 426
Biological effects of climate change: species adapt, move or die 427
Climate change presents new selection pressures 427
The footprint of climate change 428
Forecasting future changes in distribution 430
Adaptive responses to climate change 431
Ecosystem changes under climate change 432
How many species are threatened with extinction? 434
Assessment of extinction risk by experts using IUCN and other categories 435
19 The taxonomic challenge ahead 439
What are the prospects of the completion of a catalogue of life? 439
The renewal of taxonomy 440
Barcoding: its history and potential in taxonomic investigations 442
Barcoding: a route to the reinvigoration of taxonomy? 445
The status of taxonomy in an era dominated by molecular biology 446
Will Earth’s species all be named before they become extinct? 447

20 Conservation: from protection to restoration and beyond 449
Ex situ conservation 449
Seed banks 452
Ex situ conservation: the future 453
The role of protected areas in countering the threat of extinction 454
Managing reserves to prevent extinction of species 457
Restoration ecology 458
Creative conservation: community translocations 459
Creative conservation: wildflower mixtures 459
Plants/seed of native provenance 459
Manipulating and creating populations in an attempt to prevent extinction 460
Restocking (augmentation, reinforcement) of existing population(s) 460
Restorations using clonal plants from various sources 461
Re-establishment (reinstatement) of an extinct population 461
Founding population(s) in new areas 462
Mix or match: inbreeding and outbreeding depression 462
Founding new populations: seed v. plants 463
Restoration projects: issues and prospects 463
Species restoration projects: what counts as success? 463
Recommendations for better restorations 463
Aims and objectives of conservation: looking back and considering the future 465
Assisted migration 466
Major dilemmas with past-orientated conservation models 469
Setting priorities in conservation 470
Creative conservation: economic and political considerations 471
Concluding remarks 472

Glossary 478
References 482
Index 569