We are in the midst of a biological revolution. Molecular tools are now providing new means of critically testing hypotheses and models of microevolution in populations of wild, cultivated, weedy and feral plants. They are also offering the opportunity for significant progress in the investigation of long-term evolution of flowering plants, as part of molecular phylogenetic studies of the Tree of Life.

This long-awaited fourth edition, fully revised by David Briggs, reflects new insights provided by molecular investigations and advances in computer science. Briggs considers the implications of these for our understanding of the evolution of flowering plants, as well as the potential for future advances. Numerous new sections on important topics such as the evolutionary impact of human activities, taxonomic challenges, gene flow and distribution, hybridisation, speciation and extinction, conservation and the molecular genetic basis of breeding systems will ensure that this remains a classic text for both undergraduate and graduate students in the field.

David Briggs is Emeritus Fellow of Wolfson College at the University of Cambridge. He has a lifelong interest in evolution, genetics, conservation and taxonomy. He is also the author of *Plant Microevolution and Conservation in Human-Influenced Ecosystems* (Cambridge, 2009), which won the British Ecological Society’s 2011 Marsh Book of the Year award.

S. Max Walters (1920–2005) was a leading British field botanist, and the author and editor of major works on the classification and identification of both wild and garden plants. He served as Director of Cambridge University Botanic Garden from 1973 until his retirement in 1983.
Plant Variation and Evolution

FOURTH EDITION

DAVID BRIGGS
Wolfson College, University of Cambridge

and

S. MAX WALTERS
Former Director of Cambridge University Botanic Garden

This edition revised by David Briggs
CONTENTS

Preface to the Fourth Edition page xii
Acknowledgements xiii
Note on names of plants xiv
List of abbreviations xv

1 Investigating plant variation and evolution 1

2 From Ray to Darwin 4
Ray and the definition of species 4
The Great Chain of Being 5
Linnaeus 6
Buffon and Lamarck 10
Darwin 11
Tests of specific difference 21

3 Early work on biometry 23
Biometrics and eugenics 23
Biometrical studies of plants 24
Commonest occurring variation in an array 25
Estimates of dispersion of the data 26
Histograms, frequency diagrams and the normal distribution curve 27
Other types of distribution 28
Comparison of different arrays of data 28
Complex distributions 29
Local races 32
Correlated variation 33
Problems of biometry 35

4 Early work on the basis of individual variation 37
Phenotype and genotype 38
Transplant experiments 39
Mendel’s experiments 41
Pangenesis 46
Mendelian ratios in plants 47
Mendelism and continuous variation 48
Physical basis of Mendelian inheritance 51
The development of plant cytology 55
Chromosome number 56
Chromosome changes 59
Non-Mendelian inheritance 59
Patterns of variation 60
Phenotypic variation 60
The extent of phenotypic variability in plants 61
Developmental variation 62
Phenotypic plasticity 64
Some early experiments 64
Individual variation in plants 66

5 Post-Darwinian ideas about evolution 67
Experimental investigation of evolution 67
The mutation theory of evolution 70
The Evolutionary Synthesis 71
Elements of the New Synthesis 71
Coda 73

6 DNA: towards an understanding of heredity and molecular evolution 74
DNA: its structure and properties 74
Replication of DNA 75
Transcription and translation of genetic information 76
Mutation of DNA 78
Exchanges of DNA segments 79
Gene silencing: epigenetic modification of DNA 79
The plant cell: adaptive, neutral and junk DNA 81
DNA in the nucleus 82
Centromeres 83
Telomeres 83
B chromosomes 83
The concept of junk DNA revisited 84
DNA in plant cells: mitochondria and chloroplasts 85
Evolutionary changes in the chloroplast structure 86
Genetics of chloroplasts and mitochondria 86
Arabidopsis thaliana: its role as a model species 86
Studying developmental processes: the role of model plants 88
Phylogenetic studies 89
Common origin to life on Earth 89
Advances in comparative genomics 90
Palaeopolyploidy and chromosomal changes 92
Duplicated genes 92
Techniques for studying genetic variation 93
Selecting marker systems to test hypotheses 95
Concluding remarks 96

7 Breeding systems 98
A. The different breeding systems found in flowering plants 98
Outbreeding 98
Molecular studies of self-incompatibility systems 102
Homomorphic and heteromorphic incompatibility systems 103
Late-acting self-incompatibility systems 104
Self-fertilisation 105
Apomixis 106
Agamospermy 107
Apomictic phenomena 108
Embryology of apomixis 109
Apomictic behaviour 111
Diplospory 111
Apospory 111
The role of pollen in the evolution of apomictic plants 112
Genetics of apomixis 113
Molecular nature and origin of apomixis 113
Some dogmas about seed apomixis 114
B. Breeding behaviour discovered in studies of wild populations 114
Consequences of different reproductive modes 114
Advantages and disadvantages of different breeding systems 116
Reproductive assurance and the genetic ‘quality’ of progeny 118
Breeding systems in wild populations 119
Outbreeding combined with vegetative reproduction 119
Outbreeding in association with vivipary 119
Outbreeding combined with occasional self-fertilisation 120
Outbreeding combined with regular self-fertilisation 121
Mixed reproduction: selfing and outcrossing in different proportions 122
Facultative and obligatory apomixis 124
Environmental control of facultative apomixis 125
C. Evolution of breeding systems 126
Some concluding remarks 132

8 Intraspecific variation and the ecotype concept 135
Turesson’s pioneer studies and other experiments 135
Experiments by American botanists 139
The widespread occurrence of ecotypes 144
Clines 144
Factors influencing the variation pattern 147
The refining of genealogical experiments 147
Sampling populations 148
Cultivation experiments 151
The designed experiment 154
The interpretation of experiments 159

9 Pattern and process in plant populations 160
Variation within and between populations 161
Selection in populations 161
Selection in changing populations: r- and K-selection 164
Fitness 165
Developments in the investigation of populations 165
Selection: the study of single factors 166
Studies of several interacting factors: Lotus and Trifolium 166
Distribution of cyanogenic variants 168
The role of herbivory 168
Small-scale influences on patterns and process in cyanogenic species 172
Reciprocal transplant experiments 173
Experimental evidence for disruptive selection 173
Comparing ‘young’ and ‘adult’ generations 176
Co-selection in swards 177
The speed of microevolutionary change: agricultural experiments 177
Rapid change in polluted sites 178
Origin of metal-tolerant populations 181
Hyperaccumulation 182
Serpentine ecotypes 183
Sulphur dioxide tolerance 184
Ozone tolerance 184
Evolution in arable areas 185
Herbicide resistance 186
Weed evolution 188
Ecotypic variation in response to seasonal or irregular extreme habitat factors 188
Phenotypic modification and genetic differentiation 189
The use of model plants in the study of microevolution 190
Detecting the signature of selection from genomic studies 190
Studies of local adaptation involving cultivation experiments 191
Combined studies of crucial life cycle traits 192
Arabidopsis: experiments on phenotypic plasticity 193
Adaptive and non-adaptive characters 196
Concluding remarks 199

10 Pattern and process: factors interacting with natural selection 201
Chance has profound effects 201
Gene flow: population variability and structure 201
Gene flow: early ideas 202
Gene flow: agricultural experiments 203
Gene flow: historic insights from the movement of pollen 203
Gene flow: historic studies of seed dispersal 205
‘Neighbourhoods’ in wild populations 206

Gene flow: studies using molecular tools 207
Gene flow: insights from the use of microsatellite markers 208
Gene flow by pollen movement 210
Animal-pollinated trees and shrubs 211
Seed/fruit dispersal 212
Recent insights into gene flow from the study of transgenic crop plants 212
Knowledge of gene flow is critical in plant conservation 214
Gene flow: future directions of research 215

11 Populations: origins and extinctions 216
Metapopulations 216
Founding events and bottleneck effects 217
Designing experiments 218
Case histories of founder events 218
Founder effects in weedy and ornamental species 219
Tracing the origin and spread of new populations 220
Identification of sources of introduced taxa 220
Once introduced, some species fail to establish 222
Development of populations: the lag phase 222
Changes in populations following introduction 223
Phenotypic plasticity and developmental adaptability 223
What factors contribute to the success of new populations? 226
Population persistence and stability: clonal growth 228
Size and longevity of clones: new insights using molecular markers 229
Implications of clonal growth in populations 229
Another major factor influencing population persistence: seed banks 232
Processes involved in the extinction of populations 233
Demographic stochasticity 233
Pollen limitation causes an Allee Effect 235
Effects of fragmentation 236
Genetics of small populations 237
Minimum viable populations 239
Concluding comments 240
12 Species and speciation: concepts and models 242
 The morphological species concept 242
 Species definitions: taking into account pattern and process 243
 The Evolutionary Species Concept 243
 Phylogenetic (cladistic) species concept 243
 Ecological species concept 243
 The Biological Species Concept 243
 Origins of species 245
 Gradual (Geographic) Speciation 246
 Abrupt speciation 246
 Polyploidy 246

13 Allopatric speciation and hybridisation 250
 Evidence for gradual speciation 251
 Crossing experiment with species of Layia 252
 The interpretation of crossing experiments 252
 Studies of Layia using molecular methods 254
 Phylogenetic studies of the Californian Tarweeds 255
 Speciation genes 255
 Pre-pollination mechanisms 256
 Post-pollination barriers 256
 Cytoplasmic male sterility: its possible role in speciation in plants 257
 Genomic changes involved in speciation 258
 Future prospects for the study of speciation genes and genomic architecture 258
 Allopatric speciation and the taxonomist 259
 Natural hybridisation 260
 Natural hybridisation in the wild: classic studies 260
 The consequences of hybridisation: some theoretical considerations 264
 Empirical studies of reinforcement 266
 The emergence of the concept of introgressive hybridisation 270
 Introgression: classic approaches championed by Anderson 271
 Genetic investigations of hybridisation 274
 Chemotaxonomy: historic investigations of hybridisation 275
 Critical tests of the hypothesis of introgression 276
 Studies of introgression using molecular tools 276

14 Abrupt speciation 287
 A. The emergence and testing of key concepts in the study of polyploidy 287
 The concept of polyploidy: early cytogenetic studies 287
 Resynthesis of wild polyploids 288
 The concepts of auto- and allopolyploidy 289
 The concept of genome analysis 291
 Genome analysis: uncertainties about ancestry 292
 Genetic control of chromosome pairing: the implications for genome analysis 294
 Studies of karyotypes 295
 Chemical studies 296
 In situ hybridisation (ISH) 297
 B. Recent insights into polyploidy from molecular studies 302
 Key questions about polyploidy and its significance 302
 How many species are polyploid? 302
 The delimitation of taxa within polyploid groups 302
 Chromosome counts provide insights into the incidence of polyploidy 303
 Historic estimates of the incidence of polyploidy 303
 Evidence from fossil plants 304
 Genetic evidence 304
Contents

17 Historical biogeography 382
The Deluge and Noah’s Ark 382
The Deluge and plant distribution 382
Eighteenth- and nineteenth-century investigations of plant geography 383
Long-range dispersal: early investigations 383
Land bridges: historic ideas 384
Continental drift 384
Pangaea and the geographical origin of the angiosperms 385
Ancient extinctions 386
The K–T extinction 387
The Pleistocene 391
Advances in plate tectonics on the interpretation of plant distributions 392
Modern phylogeographical investigations of plant distributions 393
Factors considered in modelling 394
Long-range dispersal: new insights 395
Single and recurrent long-range dispersal 396
Evidence for back colonisation 397
From which source(s) did long-distance migrants originate? 397
Disjunctions: long-distance dispersal or vicariance? 398
The investigation of ‘divergence times’ for taxa 399
Mediterranean island endemics: dating and ancestral area reconstruction 400
Phylogenetic studies of the opening of a land bridge 400
Migration: implications of specialisation 400
Quaternary Ice Ages: plant survival, migration and extinction 401
Refugia in different parts of the world 404
Implications of refuges 404
Migration from refuges 405
The refugial hypothesis of Amazonian speciation 407
Palaeocology: insights from the study of ancient DNA 407
Multidisciplinary approaches in biogeography: two case histories 408
Concluding remarks 409

18 The evolutionary impact of human activities 411
Humans: as animals practising extreme niche construction 411
Human impact on the environment 411
The evolutionary effects of human activities 412
Assessing human impacts on ecosystems: sources of evidence 412
From natural ecosystems to cultural landscapes 413
The extent of human-modified ecosystems 414
Plants: their different roles on the cultural landscape stage 416
Interactions between plants 418
Do human activities present threats to biodiversity? 419
Human influences: habitat loss and fragmentation 419
Human influences: introduced organisms 420
The ecological consequences of introduced species 422
Human influences: the effects of pollution 422
Eutrophication 423
Acid Rain 423
Human influences: global climate change 424
The Greenhouse Effect 424
Direct observation of climate change 425
Predictions of future climate change 425
Climate change: human influences 426
Climate change sceptics and deniers 426
Biological effects of climate change: species adapt, move or die 427
Climate change presents new selection pressures 427
The footprint of climate change 428
Forecasting future changes in distribution 430
Adaptive responses to climate change 431
Ecosystem changes under climate change 432
How many species are threatened with extinction? 434
Assessment of extinction risk by experts using IUCN and other categories 435
19 The taxonomic challenge ahead 439
What are the prospects of the completion of a catalogue of life? 439
The renewal of taxonomy 440
Barcoding: its history and potential in taxonomic investigations 442
Barcoding: a route to the reinvigoration of taxonomy? 445
The status of taxonomy in an era dominated by molecular biology 446
Will Earth’s species all be named before they become extinct? 447

20 Conservation: from protection to restoration and beyond 449
Ex situ conservation 449
Seed banks 452
Ex situ conservation: the future 453
The role of protected areas in countering the threat of extinction 454
Managing reserves to prevent extinction of species 457
Restoration ecology 458
Creative conservation: community translocations 459
Creative conservation: wildflower mixtures 459
Plants/seed of native provenance 459
Manipulating and creating populations in an attempt to prevent extinction 460
Restocking (augmentation, reinforcement) of existing population(s) 460
Restorations using clonal plants from various sources 461
Re-establishment (reinstatement) of an extinct population 461
Founding population(s) in new areas 462
Mix or match: inbreeding and outbreeding depression 462
Founding new populations: seed v. plants 463
Restoration projects: issues and prospects 463
Species restoration projects: what counts as success? 463
Recommendations for better restorations 463
Aims and objectives of conservation: looking back and considering the future 465
Assisted migration 466
Major dilemmas with past-orientated conservation models 469
Setting priorities in conservation 470
Creative conservation: economic and political considerations 471
Concluding remarks 472

Glossary 478
References 482
Index 569
PREFACE

In writing the earlier editions of *Plant Variation and Evolution*, with my great friend Max Walters (1920–2005), our approach to this complex subject was clearly set out in the preface to the Third Edition. When it was first proposed to establish laboratories at Cambridge, Todhunter, the mathematician, objected that it was unnecessary for students to see experiments performed, since the results could be vouched for by their teachers, all of them of the highest character, and many of them clergymen of the Church of England' (Bertrand Russell, 1931). While Russell’s mischievously anti-clerical comments do not entirely reflect the views of Todhunter (Todhunter, 1873; Macfarlane, 1916), they do provoke us to take a critical look at the way scientific advances are made, in every historical period, through questioning the opinions of various ‘authorities’. In many texts on evolution a judicious mixture of concepts, mathematical ideas and the results of laboratory and field experiments are combined in an elaborate pastiche to provide a more or less complete edifice. Perhaps one or two areas of uncertainty may be indicated, but the general impression is of a house well built, but awaiting the placing of the last few roof-tiles. Conversations with research biologists, however, quickly reveal a different picture. While the broad outlines of evolution are supported by an increasing body of evidence, almost nothing is completely settled: current views represent a provisional framework, and even some parts of the subject, long held to be clarified, are suddenly overturned by new discoveries. Teaching experience reinforces our view that students of science should be shown the way in which, slowly and painstakingly, our present partial pictures have been built up, how and to what extent they are testable by experiment and observation, and in what way they remain vague or defective. A healthy scepticism in the face of the complexities of organic evolution is the best guarantee of real progress in understanding its patterns and processes.

The aim of this new edition is to provide, as before, an authoritative introductory university text, while at the same time satisfying the general reader with a real interest in the subject, showing how the study of variation and evolution of flowering plants has developed over the last 400 years. This development has been increasingly scientific, leading to the realisation of the crucial importance of hypothesis and experiment.

Throughout the book, I have tried to provide a critical but concise overview of current excitements and advances, while at the same time paying attention to difficulties and uncertainties. Furthermore, I have intentionally introduced and shown the connection between many complex subjects, and have therefore provided references to important research papers and books, in order that the reader may build on the framework provided.

As in previous editions, I emphasise the logical and historical framework of early observation and experiment, which is almost wholly neglected in some university courses. Sapp (2003) stresses this important point when he writes, ‘many teachers of science have noted, [that] scientific problems are usually much better understood from studying their history rather than their logic alone’. Accordingly this book shows how, building on historical foundations, modern investigative methods are providing new insights into past and present patterns of variation in nature and the processes that give rise to them.
First, I pay tribute to my co-author and mentor Max Walters, formerly Director of Cambridge University Botanic Garden. My family and I thank Max and his wife Lorna for lifelong friendship and many kindnesses.

I wish to thank those teachers, colleagues and friends who gave me encouragement and provided many life-changing opportunities: Ada Radford (my first biology teacher), Donald Pigott, David Valentine, Harry Godwin, Harold Whitehouse, Percy Brian, Richard West, John Burnett, Jack Harley, David Lewis and Peter Ayres.

Over the years, I have discussed many issues about evolution and conservation with a large number of friends and colleagues. To all of them I offer my thanks: John Akeroyd, Janis Antonovics, Elizabeth Arnold, John Barrett, David Bellamy, Alex Berrie, John Birks, May Block, Margaret Bradshaw, Tony Bradshaw, Arthur Cain, Arthur Chater, Judy Cheney, David Coombe, Gigi Crompton, Quentin Cronk, Jim and Camilla Dickson, Jeff Duckett, Trevor Elkington, Harriet Gillett, Peter Grubb, Mark Gurney, John Harper, Joe Harvey, John Harvey, Peter Jack, David Kohn, Andrew Lack, Vince Lea, Elin Lemche, Roselyne Lumaret, Terry Mansfield, Hugh McAllister, Pierre Morisset, Gina Murrell, Peter Orris, Philip Oswald, John Parker, Joseph Pollard, Duncan Porter, Chris Preston, Oliver Rackham, John Raven, Tom ap Rees, Peter Sell, Alison Smith, Betty Smocovitis, Edmund Tanner, Andrew and Jane Theaker, John Thompson, Lorna Walters, Alex Watt, David Webb, John West and Peter Yeo.

In particular I would like to thank those I taught in the Universities of Cambridge and Glasgow: their challenging questions stimulated me to write this book.

I am especially grateful to Joachim Kadereit, Andrew Lack, Chris Preston, Duncan Porter and Suzanne Warwick who offered comments on the first drafts of this book. I very greatly value their friendship, expert advice and encouragement.

I pay special tribute to my family for encouraging me to write this book, my parents Mabel and Tom Briggs, Nancy Briggs, Jonathan Briggs, Nicholas Oates, Alastair Briggs, Catherine, Miranda, Ella, Judith and Adrian Howe, Norman Singer and Geoffrey Charlesworth.

Without my wife Daphne’s support, tolerance and unfailing commitment, this book would never have been written. With good humour and constant encouragement, she has helped me bring this project to fruition. I thank her for all her help, especially for hours of painstaking checking and proofreading.

I am very grateful for the friendly help, advice and encouragement I have received from the staff of Cambridge University Library and the Central Science Library. It is a pleasure to thank the staff of Cambridge University Press for their encouragement and assistance through all the stages of writing this new edition: Dominic Lewis, Megan Waddington, Hamish Adamson, Sarah Starkey, Charlotte Thomas and Ilaria Tassistro. Ken Moxham, my copy-editor, played an invaluable role in the final stages of the preparation of the book.
NOTE ON NAMES OF PLANTS

Scientific names are generally in accordance with the third edition of Stace, C. (2010) *New Flora of the British Isles* for British plants; and, for European plants not in the British flora, Tutin et al. (1964–93) *Flora Europaea*. In the cases not covered by either work we have used the name we believe to be correct. Where an author has used a non-current name, this is noted in brackets.

While some botanists continue to use long-standing names for important families, increasingly others use names derived from the type genus (e.g. Compositae/Asteraceae; Cruciferae/Brassicaceae, etc.). We give alternative names in the text.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>amplified fragment length polymorphism</td>
</tr>
<tr>
<td>APG</td>
<td>Angiosperm Phylogeny Group</td>
</tr>
<tr>
<td>BGCI</td>
<td>Botanic Gardens Conservation International</td>
</tr>
<tr>
<td>BP</td>
<td>before the present</td>
</tr>
<tr>
<td>BSC</td>
<td>Biological Species Concept</td>
</tr>
<tr>
<td>CMS</td>
<td>cytoplasmic male sterility</td>
</tr>
<tr>
<td>CNI</td>
<td>cytonuclear incompatibilities</td>
</tr>
<tr>
<td>cpDNA</td>
<td>chloroplast DNA</td>
</tr>
<tr>
<td>ENM</td>
<td>ecological niche modelling</td>
</tr>
<tr>
<td>ESM</td>
<td>Earth System Model</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in situ hybridisation</td>
</tr>
<tr>
<td>GISH</td>
<td>genomic in situ hybridisation</td>
</tr>
<tr>
<td>GM</td>
<td>genetically modified</td>
</tr>
<tr>
<td>HGT</td>
<td>horizontal transfer of genetic information</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISH</td>
<td>in situ hybridisation</td>
</tr>
<tr>
<td>ISSRs</td>
<td>inter simple sequence repeats</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>K–T</td>
<td>Cretaceous–Tertiary (K–T) boundary</td>
</tr>
<tr>
<td>LGM</td>
<td>Last Glacial Maximum</td>
</tr>
<tr>
<td>mtDNA</td>
<td>mitochondrial DNA</td>
</tr>
<tr>
<td>MVP</td>
<td>Minimum Viable Population</td>
</tr>
<tr>
<td>Mya</td>
<td>million years ago</td>
</tr>
<tr>
<td>Otu</td>
<td>operational taxonomic unit</td>
</tr>
<tr>
<td>PCA</td>
<td>principal component analysis</td>
</tr>
<tr>
<td>PCO</td>
<td>principal coordinates analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PVA</td>
<td>population viability analysis</td>
</tr>
<tr>
<td>QTLs</td>
<td>quantitative trait loci</td>
</tr>
<tr>
<td>RAPD</td>
<td>random amplified polymorphic DNA</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>SSRs</td>
<td>simple sequence repeats</td>
</tr>
<tr>
<td>SSSI</td>
<td>Site of Special Scientific Interest in UK</td>
</tr>
<tr>
<td>STR</td>
<td>short tandem repeat</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environmental Programme</td>
</tr>
<tr>
<td>WGD</td>
<td>whole genome duplication</td>
</tr>
<tr>
<td>WCMC</td>
<td>World Conservation Monitoring Centre</td>
</tr>
</tbody>
</table>