The Mathematics of Signal Processing

Arising from courses taught by the authors, this largely self-contained treatment is ideal for mathematicians who are interested in applications or for students from applied fields who want to understand the mathematics behind their subject.

Early chapters cover Fourier analysis, functional analysis, probability and linear algebra, all of which have been chosen to prepare the reader for the applications to come. The book includes rigorous proofs of core results in compressive sensing and wavelet convergence. Fundamental is the treatment of the linear system \(y = \Phi x \) in both finite and infinite dimensions. There are three possibilities: the system is determined, overdetermined or underdetermined, each with different aspects.

The authors assume only basic familiarity with advanced calculus, linear algebra and matrix theory, and modest familiarity with signal processing, so the book is accessible to students from the advanced undergraduate level. Many exercises are also included.

STEVEN B. DAMELIN is Full Professor of Mathematics and Director for the Unit of Advances in Mathematics and its Applications, USA.

WILLARD MILLER, JR. is Professor Emeritus in the School of Mathematics at the University of Minnesota.
Cambridge Texts in Applied Mathematics

All titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Nonlinear Dispersive Waves
MARK J. ABLowitz

Complex Variables: Introduction and Applications (2nd Edition)
MARK J. ABLowitz & ATHANASSIOS S. FOKAS

Scaling
G. I. R. BARENBLATT

Introduction to Symmetry Analysis
BRIAN J. CANTWELL

Hydrodynamic Instabilities
FRANÇOIS CHARRU

A First Course in Continuum Mechanics
OSCAR GONZALEZ & ANDREW M. STUART

Theory of Vortex Sound
M. S. HOWE

Applied Solid Mechanics
PETER HOWELL, GREGORY KOZYREFF & JOHN OCKENDON

Practical Applied Mathematics: Modelling, Analysis, Approximation
SAM HOWISON

A First Course in the Numerical Analysis of Differential Equations (2nd Edition)
ARIEH ISERLES

A First Course in Combinatorial Optimization
JON LEE

An Introduction to Parallel and Vector Scientific Computation
RONALD W. SHONKWILER & LEW LEFTON
The Mathematics of Signal Processing

S T E V E N B. D A M E L I N
Unit of Advances in Mathematics and its Applications

W I L L A R D M I L L E R, J R.
University of Minnesota
This title: Cambridge University Press
978-1-107-01322-3 - The Mathematics of Signal Processing
Steven B. Damelin and Willard Miller
Frontmatter
More information
Dedicated to our parents, children and partners
Contents

Preface

Introduction

1 Normed vector spaces

1.1 Definitions
1.2 Inner products and norms
1.3 Finite-dimensional ℓ_p spaces
1.4 Digging deeper: completion of inner product spaces
1.5 Hilbert spaces, L_2 and l_2
1.6 Orthogonal projections, Gram–Schmidt orthogonalization
1.7 Linear operators and matrices, LS approximations
1.8 Additional exercises

2 Analytic tools

2.1 Improper integrals
2.2 The gamma functions and beta functions
2.3 The sinc function and its improper relatives
2.4 Infinite products
2.5 Additional exercises

3 Fourier series

3.1 Definitions, real Fourier series and complex Fourier series
3.2 Examples
3.3 Intervals of varying length, odd and even functions
3.4 Convergence results
3.5 More on pointwise convergence, Gibbs phenomena
3.6 Further properties of Fourier series
Contents

3.7 Digging deeper: arithmetic summability and Fejér’s theorem 116
3.8 Additional exercises 123

4 The Fourier transform 127
4.1 Fourier transforms as integrals 127
4.2 The transform as a limit of Fourier series 129
4.3 L_2 convergence of the Fourier transform 135
4.4 The Riemann–Lebesgue lemma and pointwise convergence 140
4.5 Relations between Fourier series and integrals: sampling 146
4.6 Fourier series and Fourier integrals: periodization 152
4.7 The Fourier integral and the uncertainty principle 154
4.8 Digging deeper 157
4.9 Additional exercises 161

5 Compressive sampling 164
5.1 Introduction 164
5.2 Algebraic theory of compressive sampling 168
5.3 Analytic theory of compressive sampling 172
5.4 Probabilistic theory of compressive sampling 183
5.5 Discussion and practical implementation 201
5.6 Additional exercises 206

6 Discrete transforms 208
6.1 Z transforms 208
6.2 Inverse Z transforms 211
6.3 Difference equations 213
6.4 Discrete Fourier transform and relations to Fourier series 214
6.5 Fast Fourier transform (FFT) 222
6.6 Approximation to the Fourier transform 223
6.7 Additional exercises 224

7 Linear filters 230
7.1 Discrete linear filters 230
7.2 Continuous filters 233
7.3 Discrete filters in the frequency domain 235
7.4 Other operations on discrete signals 238
7.5 Additional exercises 240

8 Windowed Fourier and continuous wavelet transforms. Frames 242
8.1 The windowed Fourier transform 243
Contents

8.2 Bases and frames, windowed frames 251
8.3 Affine frames 268
8.4 Additional exercises 270

9 Multiresolution analysis 272
 9.1 Haar wavelets 272
 9.2 The multiresolution structure 284
 9.3 Filter banks and reconstruction of signals 296
 9.4 The unitary two-channel filter bank system 304
 9.5 A perfect reconstruction filter bank with $N = 1$ 306
 9.6 Perfect reconstruction for two-channel filter banks 307
 9.7 Halfband filters and spectral factorization 309
 9.8 Maxflat filters 312
 9.9 Low pass iteration and the cascade algorithm 317
 9.10 Scaling functions by recursion: dyadic points 320
 9.11 The cascade algorithm in the frequency domain 329
 9.12 Some technical results 332
 9.13 Additional exercises 335

10 Discrete wavelet theory 341
 10.1 L_2 convergence 345
 10.2 Accuracy of approximation 354
 10.3 Smoothness of scaling functions and wavelets 359
 10.4 Additional exercises 365

11 Biorthogonal filters and wavelets 367
 11.1 Resumé of basic facts on biorthogonal filters 367
 11.2 Biorthogonal wavelets: multiresolution structure 370
 11.3 Splines 382
 11.4 Generalizations of filter banks and wavelets 390
 11.5 Finite length signals 395
 11.6 Circulant matrices 397
 11.7 Additional exercises 400

12 Parsimonious representation of data 401
 12.1 The nature of digital images 402
 12.2 Pattern recognition and clustering 418
 12.3 Image representation of data 426
 12.4 Image compression 429
 12.5 Additional exercises 433

References 437
Index 443
Preface

 Basically, this is a book about mathematics, pitched at the advanced undergraduate/beginning graduate level, where ideas from signal processing are used to motivate much of the material, and applications of the theory to signal processing are featured. It is meant for math students who are interested in potential applications of mathematical structures and for students from the fields of application who want to understand the mathematical foundations of their subject. The first few chapters cover rather standard material in Fourier analysis, functional analysis, probability theory and linear algebra, but the topics are carefully chosen to prepare the student for the more technical applications to come. The mathematical core is the treatment of the linear system $y = \Phi x$ in both finite-dimensional and infinite-dimensional cases. This breaks up naturally into three categories in which the system is determined, overdetermined or underdetermined. Each has different mathematical aspects and leads to different types of application. There are a number of books with some overlap in coverage with this volume, e.g., [11, 15, 17, 19, 53, 69, 71, 72, 73, 82, 84, 95, 99, 101], and we have profited from them. However, our text has a number of features, including its coverage of subject matter, that together make it unique. An important aspect of this book on the interface between fields is that it is largely self-contained. Many such books continually refer the reader elsewhere for essential background material. We have tried to avoid this. We assume the reader has a basic familiarity with advanced calculus and with linear algebra and matrix theory up through the diagonalization of symmetric or self-adjoint matrices. Most of the remaining development of topics is self-contained. When we do need to call on technical results not proved in the text, we try to be specific. Little in the way of formal knowledge about signal processing is assumed. Thus while
this means that many interesting topics cannot be covered in a text of modest size, the topics that are treated have a logical coherence, and the reader is not continually distracted by appeals to other books and papers. There are many exercises. In most of the volume the logic of the mathematical topics predominates, but in a few chapters, particularly for compressive sensing and for parsimonious representation of data, the issues in the area of application predominate and mathematical topics are introduced as appropriate to tackle the applied problems. Some of the sections, designated by “Digging deeper” are more technical and can be mostly skipped on a first reading. We usually give a nontechnical description of the principal results of these sections. The book is sufficiently flexible to provide relatively easy access to new ideas for students or instructors who wish to skip around, while filling in the background details for others. We include a large list of references for the reader who wants to “dig deeper.” In particular, this is the case in the chapter on the parsimonious representation of data.

This book arose from courses we have both taught and from ongoing research. The idea of writing the book originated while the first author was a New Directions Professor of Imaging at the Institute for Mathematics and its Applications, The University of Minnesota during the 05–06 academic year. The authors acknowledge support from the National Science Foundation; the Centre for High Performance Computing, Cape Town; the Institute for Mathematics and its Applications, University of Minnesota; the School of Computational and Applied Mathematics, the University of the Witwatersrand, Johannesburg; Georgia Southern University; and the United States Office of Airforce Research. We are indebted to a large number of colleagues and students who have provided valuable feedback on this project, particularly Li Lin and Peter Mueller who tested the compressive sensing algorithms. All figures in this book were generated by us from open source programs such as CVX, Maple or MATLAB, or from licensed MATLAB wavelet and signal processing toolboxes.

In closing, we thank the staff at Cambridge University Press, especially David Tranah and Jon Billam, for their support and cooperation during the preparation of this volume and we look forward to working with them on future projects.