Time-Lapse Microscopy in In-Vitro Fertilization
Time-Lapse Microscopy in In-Vitro Fertilization

Edited by

Marcos Meseguer

Scientific Supervisor and Senior Embryologist, IVI Clinic Valencia, and Assistant Professor in Biotechnology, Valencia University, Valencia, Spain
This book is dedicated to those professional pioneers as mechanical engineers and biologists who made it possible to bring this technology into the clinical field, especially to Dr. Niels Ramsing and Dr. Jens Gundersen for their vast contribution in this task.
Contents

List of contributors viii
Preface xi

1. Introduction: IVF concepts, embryo development, and embryo selection 1
 Thomas Ebner

2. Description of time-lapse systems: EmbryoScope™ 11
 Markus Montag, Tine Q. Kajhøj, and Inge E. Agerholm

3. Description of time-lapse systems: Primo Vision™ 31
 Csaba Pribenszky

4. Description of time-lapse systems: the Eeva™ Test 51
 Lei Tan, Shehua Shen, and Alice A. Chen

5. Morphological cytoplasmic oocyte alterations: embryo kinetics of dysmorphic oocytes 77
 Belén Aparicio-Ruiz and Maria Jose de los Santos

6. Evaluating embryo development stages using time-lapse microscopy (TLM) 90
 Thomas Freour

7. Embryo quality (classification and selection) 104
 Alberto Tejera, Natalia Basile, Mauro Caiazzo, and Marcos Meseguer

8. Time-lapse implementation in a clinical setting: management of laboratory quality 128
 Dean E. Morbeck

9. Time-lapse implementation in a clinical setting: outcome results 144
 Nikica Zaninovic, Qiansheng Zhan, and Zev Rosenwaks

10. Unusual phenomena in embryonic development 165
 Giovanni Coticchio, Mariabatrice Dal Canto, Mario Mignini Renzini, and Rubens Fadini

Index 174
Contributors

Inge E. Agerholm
The Fertility Clinic, Hospital Horsens, Horsens, Denmark

Belén Aparicio-Ruiz
Embryologist, IVI Clinic Valencia, Valencia, Spain

Natalia Basile
Embryologist, IVI Clinic Madrid, Madrid, Spain

Mauro Caiazzo
Embryologist, IVI Clinic Madrid, Madrid, Spain

Mariabeatrice Dal Canto
Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Monza, Italy

Alice A. Chen
Auxogyn, Inc., Menlo Park, CA, USA

Giovanni Coticchio
Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Monza, Italy

Thomas Ebner
Landes-Frauen- und Kinderklinik, Kinderwunsch Zentrum Linz, and Faculty of Medicine, Johannes Kepler University, Linz, Austria

Rubens Fadini
Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Monza, Italy

Marcos Meseguer
Scientific Supervisor and Senior Embryologist, IVI Clinic Valencia, and Assistant Professor in Biotechnology, Valencia University, Valencia, Spain

Markus Montag
ilabcomm GmbH, St. Augustin, Germany

Dean E. Morbeck
Division of Reproductive Endocrinology and Infertility, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA

Csaba Pribenszky
Senior Researcher, Vitrolife Kft., Budapest, and Assistant Professor, University of Veterinary Science, Budapest, Hungary

Mario Mignini Renzini
Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Monza, Italy

Zev Rosenwaks
Director, Claudia Cohen Center for Reproductive Medicine, and Professor of Reproductive Medicine and Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA

Maria Jose de los Santos
IVF Laboratory Director, IVI Clinic Valencia, Valencia, Spain

Shehua Shen
Auxogyn, Inc., Menlo Park, CA, USA

Lei Tan
Auxogyn, Inc., Menlo Park, CA, USA

Alberto Tejera
Embryologist, IVI Clinic Valencia, Valencia, Spain

Tine Q. Kajhøj
Vitrolife A/S Denmark, Aarhus, Denmark
Nikica Zaninovic
Director, Embryology Laboratory, and Associate Professor of Embryology in Reproductive Medicine, Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA

Qiansheng Zhan
Assistant Professor of Embryology in Reproductive Medicine, Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
Preface

Assisted reproduction is a field constantly seeking for improvement. For those who work in it, fascination is inevitable during the first microscopic observations of the cellular material. Male and female gametes can enthrall the viewer, giving rise to a mysterious structure that develops according to a pre-defined plan: the human embryo. The understanding of this complex process definitely exceeds its morphological evaluation and it welcomes new technologies on a cellular and molecular level.

The study of the embryo’s metabolism was crucial for the formulation of suitable culture media. In the early 1990s a groundbreaking technique, ICSI, revolutionized the treatment of male infertility. Later on, and as we entered the world of genomics, we began to understand the extraordinarily detailed genetic assemblage that determines the fate of an embryo, a process governed by molecular mechanisms and signaling pathways. Reconciliation of the social evolution of modern women and their maternity came along with vitrification, and the wave of the “omics” initiated an era of non-invasiveness to study embryo development in the IVF laboratory. Assisted reproduction has evolved indeed; however, there will always be room for improvement.

In the past 30 years, cell biology has benefited from the achievements in the image analysis technology. During the 1980s, the use of analog videos greatly expanded the use of the microscope as an analytical tool and, most recently, analog systems have been replaced by digital ones. The culmination of this initial approach is presented to us in the form of time-lapse systems, a technology leading us to evolve from single static observations to the continuous surveillance of human embryos in the IVF laboratory.

The idea of this time-lapse atlas was forged by Marcos Meseguer, undoubtedly a pioneer in the field, in combination with the University of Cambridge. The objective was to create a dynamic and highly visual atlas of human embryo development. For this purpose a group of different leaders in the clinical and scientific fields reunite to share their experience on this new technology. The atlas gives the reader the opportunity to review known aspects of human embryo development from a different approach, as well as to learn and visualize new and useful concepts related to human embryo development. It is an absolute “must-see-read” for all the clinicians and scientists involved in the field of assisted reproduction.

Natalia Basile
Embryologist
IVI Clinic Madrid
Spain