A TEXT BOOK
OF
ELEMENTARY ASTRONOMY
Total eclipse of the Sun: Aegean Sea, 1936
A TEXT BOOK
OF
ELEMENTARY
ASTRONOMY

By
ERNEST AGAR BEET
B.Sc., F.R.A.S.

CAMBRIDGE
AT THE UNIVERSITY PRESS
1953
CONTENTS

List of Illustrations page vij

Preface ix

Chapters

I. CONCERNING LIGHT 1
Travels in straight lines—reflection from plane and concave mirrors—refraction—atmospheric refraction—lenses—the spectrum.

II. THE EARTH 12
Shape and size of the Earth.

III. THE ROTATION OF THE EARTH 13
Evidence for rotation—circumpolar stars—Pole Star—the Plough.

IV. CONSTELLATIONS 17

V. THE ANNUAL MOTION OF THE EARTH 21
Changing constellations—Signs of the Zodiac—the ellipse.

VI. TIME 27
The meridian—solar time—sidereal time—mean time—summer time—24-hour clock—leap year.

VII. POSITION UPON THE EARTH 32
Local time—longitude—latitude—chronometers—Nautical Almanack—sextant—methods of navigation.

VIII. THE SEASONS 39
Plane of the ecliptic—effects of inclination—tropics—equinoxes—solstices—
position of the Sun in the sky.

IX. THE MOON 44
Motion—phases—eclipses—shadows—shape of orbit.

X. THE STORY OF THE PLANETS 51
The name—ancient ideas—motion of Venus—motion of Mars—Copernicus—Tycho—Kepler—Galileo.
CONTENTS

Chapters

XI. THE LAW OF GRAVITATION page 56
Newton—gravitation—tides—discovery of Uranus, Neptune and Pluto—table of the solar system.

XII. TELESCOPES 60
Simple telescope—eyepieces—equatorial—transit instrument—Greenwich Observatory—reflecting telescopes.

XIII. MORE ABOUT THE SOLAR SYSTEM 68

XIV. THE SUN 77
Surface—sunspots—prominences—corona—spectroheliograph—Fraunhofer's lines—magnetic storms—aurora—Zodiacal light.

XV. THE STARS 82
Magnitudes—variable stars—novae—distances of stars—light year—parsec—inverse square law.

XVI. THE STELLAR UNIVERSE 86
Double stars—star clusters—nebulae—Milky Way—stellar motions—completed picture—birth of the stars—life in other worlds—final problems.

Questions 95

Bibliography 106

Index 107
ILLUSTRATIONS

Frontispiece. Total eclipse of the Sun: Aegean Sea, 1936

Fig. 1. The laws of reflection page 2
2. Effect of rotating a mirror 3
3. A concave mirror 4
4. Formation of a real image by a concave mirror 4
5. Refraction in water 5
6. Refraction through a glass slab 5
7. Refraction through a prism 6
8. Internal reflection 6
9. A reflecting prism 6
10. Atmospheric refraction 7
11. A convex lens 8
12. Formation of a real image by a convex lens 8
13. Formation of a virtual image by a convex lens 9
14. The dispersion of light 9
15. Types of spectra 10
16. The curvature of the Earth 12
17. The dimensions of the Earth 13
18. The ancient world 14
19. Model of the rotating sky 15
20. To find the Pole Star 16
21. The rotating sky facing 16
22. The stars of autumn 18
23. The stars of winter 19
24. The constellation of Orion 20
25. The Earth’s orbit 22
26. October and January positions enlarged from Fig. 25 23
27. Constellations of the Zodiac 24, 25
28. To draw an ellipse 26
29. Finding the meridian 28
30. Sidereal and solar days 30
31. Positions of the Earth at intervals of 365 days 31
32. Longitude 33
33. Latitude 34
34. The altitude of the Pole Star 34
35. The principle of the sextant 36
36. A ship’s chronometer facing 36
37. A sextant 37
38. An apparatus to measure altitude 38
39. To illustrate the plane of the ecliptic 39
40. The Earth’s tilt 40
41. The seasons 41
42. The path of the Sun across the sky 43
43. The phases of the Moon 44
44. An eclipse of the Moon 46
45. Why eclipses are infrequent 47
46. The two kinds of shadow 47
viii

ILLUSTRATIONS

Fig. 47. The three types of solar eclipse \[\text{page 48}\]
48. A lunar eclipse \[48\]
49. The Moon's orbit \[49\]
50. Estimating the size of the Moon \[50\]
51. The innermost planets \[52\]
52. The path of Mars among the stars \[53\]
53. An epicycle \[54\]
54. The cause of the tides \[57\]
55. The principle of the telescope \[60\]
56. The Galilean telescope \[62\]
57. A 5-inch equatorial telescope equipped for photography \[facing 62\]
58. A 4-inch transit circle \[facing 63\]
59. The Pleiades rising and setting \[63\]
60. Greenwich Observatory \[facing 64\]
61. The 40-inch Yerkes refractor \[facing 65\]
62. The principle of the reflecting telescope \[66\]
63. The 74-inch Radcliffe reflector \[facing 66\]
64. The 100-inch reflector at Mount Wilson \[between 66, 67\]
65. Model of the new 200-inch telescope \[between 66, 67\]
66. To make a simple telescope \[67\]
67. The Moon about third quarter \[facing 68\]
68. The Moon about first quarter \[facing 69\]
69. Key map of the Moon \[69\]
70. Mars in September 1924 \[facing 70\]
71. Photograph of Jupiter \[facing 71\]
72. Photographs of Saturn \[facing 71\]
73. The phases of Venus \[71\]
74. The satellites of Jupiter \[72\]
75. The orbit of Halley's comet \[74\]
76. Halley's comet in 1910 \[facing 74\]
77. The measurement of the velocity of light \[76\]
78. The Sun, showing sunspots \[facing 76\]
79. The solar eclipse of 1919, showing the famous \[facing 77\]
'ant-eater' prominence \[78\]
80. The principle of the spectroheliograph \[facing 78\]
81. The Sun, photographed in hydrogen light \[facing 79\]
82. Photographs of spectra \[facing 79\]
83. Method of observing the Sun \[81\]
84. The parallax of a star \[85\]
85. The inverse square law \[85\]
86. Mizar and Alcor \[87\]
87. The star cluster in Hercules \[facing 88\]
88. The nebula in Orion \[between 88, 89\]
89. The nebula in Andromeda \[facing 89\]
90. The Milky Way \[89\]
91. The shape of the galaxy \[89\]
92. Illustrating the birth of the stars \[93\]
 (i) Rotation of gases forming spiral nebulae \[93\]
 (ii) Rotation of liquids forming double stars \[93\]
 (iii) Planets produced by tidal action \[93\]
PREFACE

A WIDER OUTLOOK in school science has been growing for some years, but although Astronomy is a subject often recommended it is seldom taught. The objections to Astronomy are, presumably, that it does not provide suitable experimental work and that time cannot be spared in an already overcrowded time table. With the rapid increase of General Science it is to be hoped that this section will eventually find its place, and this book more than covers the syllabus suggested by the Science Masters' Association.

The book may also have an appeal outside the schools, as some may wish for a course of instruction more formal than the general reading already well catered for in the extensive literature of the subject. It will form a sequel to my former book, A Guide to the Sky, which is an observational introduction for young people. Astronomy may be approached from a mathematical or experimental standpoint. The former has already been ably done by P. F. Burns in his First Steps in Astronomy; an experimental and historical approach is made here.

Simple experimental work which forms a part of the main argument appears in its place in the text, as do some suggested demonstrations. At the ends of the chapters there will be found other exercises and out-door work of which the importance cannot be overstressed. The questions at the end of the book are graded, A being preliminary questions intended to direct the thoughts before reading the chapter, B questions on the text, and C of a problem nature.

Figs. 21, 67, 68, 71, 72, 76, 78, 79, 81, 87 and 90 are to be found in The Stars in their Courses by Sir James Jeans; Fig. 89 is in the same author's The Universe Around Us; Figs. 61 and 64 are reproduced from Light by A. E. E. McKenzie. For permission to use these the author is grateful to the Cambridge University Press, and to the owners of the copyrights to whom ascription is made on the figures themselves.

Acknowledgements are also tendered to Dr. J. L. Haughton, F.R.A.S., and the British Astronomical Association for the frontpiece; Sir Howard

1 The Teaching of General Science, Part II, 1938.
X

PREFACE

Grubb Parsons and Co. for Figs. 57, 58 and 63; the Director of the Yerkes Observatory for Fig. 88; The New York Times for Fig. 65; Mr P. M. Ryves, F.R.A.S., and the family of the late T. E. R. Phillips for Fig. 70; Mr F. J. Sellers, F.R.A.S., for Question 72; Commander W. S. MacIlwaine, R.N., for reading and criticising a part of the manuscript; my father, Rev. Dr W. E. Beet, F.R.Hist.S., for reading the proofs; and to many authors and friends whose ideas on teaching Astronomy have influenced mine and have thus become incorporated in this book.

E. A. B.

NAUTICAL COLLEGE,
PANGBOURNE.

December 1944