advection, 97, 251
advection–dispersion point form
one-dimensional discrete, 386
one-dimensional simplified, 381
dimensionless, 382
simplified, 380
two-dimensional diffusion only
differential form, 391
discrete form, 392
two-dimensional simplified, 389
angular velocity vector, 276
aquifer
confined, 353
leaky, 353
unconfined, 353
arithmetic, 21
asymptotic expansion, 1
balance of internal energy
Eulerian form, 308
Lagrangian form, 308
temperature form, 310
balance of mechanical energy
derivation, 294
Eulerian form, 294
with gravitational potential, 295
general volume, 297, 314
with gravitational potential, 297
hydraulic routing
constant density, 337
derivation, 335–337
Bernoulli equation
at a point, 293
costant density, 293
derivation, 291–293
differential, 292
Biot number, 128
Bond number, 129
boundary conditions, 46
Boussinesq coefficient, 320
Brownian motion, 92, 97
Buckingham Pi theorem, 106
calibration, 40, 61–62
capillary number, 130
carrying capacity, 139
channel slope, 321
Chezy’s equation, 327
two-dimensional, 344
Chezy coefficient, 327
closure relations, 46
complementary error function, 267
compressibility
fluid, 361
matrix, 361
computational molecule, 390
conduction
electrical, 94
entropy, 94
heat, 94
conservation of species mass
CSTR, 262
conservation equations, 46
conservation of angular momentum
derivation, 301–302
conservation of mass
CSTR, 226
derivation, 225–226
discrete equation, 227
Eulerian form, 220, 224
fixed volume, 216
general volume, 215, 314
hydraulic routing, 318
constant density, 328
derivation, 317–318
hydrologic routing, 229
incompressible fluid, 223
Lagrangian form, 222
material volume, 216
porous medium
derivation, 354–358
including matrix deformation, 361
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>porous medium fluid</td>
</tr>
<tr>
<td>Eulerian form, 358</td>
</tr>
<tr>
<td>general volume, 356</td>
</tr>
<tr>
<td>shallow-water flow, 339</td>
</tr>
<tr>
<td>constant density, 340</td>
</tr>
<tr>
<td>conservation of moles</td>
</tr>
<tr>
<td>general volume, 248</td>
</tr>
<tr>
<td>point equation, 248</td>
</tr>
</tbody>
</table>
mechanical, 97
mixing, 95
momentum, 96
dispersion coefficient, 252
dispersion vector
mass, 250–252
molar, 255
dispersive flux
mass, 251
molar, 256
divergence
of a tensor, 279
divergence operator
defined, 187
divergence theorem, 197
derivation, 195–197
interpretation, 197
dot product, 176, 278
dynamic wave approximation, 330
eddy viscosity, 288
education, 5
energy
demand, 23
internal, 304
kinetic, 304
potential, 304
energy slope, 337
enthalpy, 309
environmental modeling, 2
elements, 3
error
observable, 63
Eulerian approach, 171
Eulerian description, 172
experimenters, 64
extrapolation, 15, 20
Fick’s law, 252
finance model, 153
finite difference method, 380
fluid
dynamics, 166
kinematics, 166
flux, 98
football, 20
Fourier’s law, 310
friction factor, 121, 326
friction slope, 323
closure, 334
dimensional analysis, 325
vector form, 344
Froude number, 128
Gauckler–Manning n, 327
Gauckler–Manning equation, 327
two-dimensional, 345
Gompertz model, 142–143
Google Earth, 32
gradient, 178–180
Cartesian coordinates, 182
cylindrical coordinates, 182
of velocity, 280
spherical coordinates, 182
gradient operator
properties, 181
gravitational potential, 295
Groundhog Day, 20
groundwater flow equation
constant density, 368
head form, 367
pressure form, 366
steady state, 369
guess and check, 156
Hadamard product, 279, 344
harvest models, 144–147
heat capacity, 309
heat transfer, 303
conduction, 303
convection, 303
radiation, 303
hurricane, 22
Hurricane Charley, 22
hydraulic conductivity, 362
tensor, 377
hydraulic radius, 326
hydraulic routing, 315
hydrologic cycle, 32
hydrologic routing, 228–232
defined, 229
hydrostatic pressure, 321
ignorance
recognized, 27
total, 27
imaginary node, 392
inner product, 176
interpolation, 15
intrinsic permeability, 365
iteration, 379
kinematics
fixed volume, 207
general control volume, 205
material volume, 206
kinematic condition
CSTR, 227
discrete equation, 228
Lagrangian approach, 172
Lagrangian description, 174
lake
| well-mixed, 399 | molecular scale, 78 |
| lake operation | Moody diagram, 121, 326 |
| three-step cycle | Muskingum equation, 231 |
| outflow first, 405 | Navier-Stokes equation |
| two-step cycle | incompressible form, 289 |
| inflow first, 403 | Navier-Stokes equation |
| outflow first, 401 | component form, 289 |
| Laplace equation, 391 | general form, 289 |
| Laplacian operator, 264 | Newton–Raphson method, 157 |
| Latin hypercube sampling, 56 | Newtonian fluid, 288 |
| linear stability theorem, 149, 400 | normal flow, 332 |
| logistic model, 138–142 | open channel flow |
| stability, 151 | kinematic wave approximation, 332 |
| macroscale, 79 | quasi-steady, 330 |
| Malthusian model, 135–138 | steady, non-uniform, 331 |
| stability, 149 | steady, uniform, 332 |
| Manning’s n, 327 | unsteady, non-uniform, 330 |
| mathematical tools | parameters |
| described, 211 | tuning, 61 |
| table, 211 | peak flood dissipation, 232 |
| matrix | photon transport, 99 |
| tridiagonal, 387 | population |
| megascale, 80 | equilibrium, 139 |
| microscale, 69, 78 | porous media flow, 350 |
| model | potential |
| continuous, 164 | energy, 88 |
| definition, 29 | Prandtl number, 127 |
| deterministic, 41–46 | problem identification, 103–104 |
| discrepancy, 63 | process |
| first order, 134 | description, 22 |
| megascale, 313 | processes, 17 |
| metered, 134 | importance, 15 |
| microscale, 313 | Punxsutawney Phil, 20 |
| population, 134 | radiation, 89, 311 |
| stable, 147 | representative elementary volume (REV), 351 |
| model building, 29 | representative elementary volume (rev), 69 |
| modeling | resemblances |
| black-box, 51 | superficial, 64 |
| modeling objectives, 104–105 | resolution scale, 79 |
| modeling process, 52–53 | Reynolds number, 121, 126, 127, 287 |
| modeling steps, 47–49 | roots of equations, 155 |
| models | Rossby number, 129 |
| analogue, 32 | Saint Venant equations, 328 |
| conceptual, 32 | scalar, 277 |
| deterministic, 36–37 | scale |
| distributed, 38 | characteristic length, 69–71 |
| language, 10 | continuum, 69 |
| lumped, 38 | dynamic time, 81 |
| mathematical, 33–35 | governing equation, 75 |
| mixed-scale, 313 | macroscale, 79 |
| physical, 30 | megascale, 80 |
| probabilistic, 35 | model development |
| scale, 30, 31 | iteration, 35 |
| modified Puls method, 230 | model development |
| iteration, 35 | model development |
| modified Puls method, 230 | model development |
Index

microscale, 78
model formulation, 165
molecular, 78
observation, 68
resolution, 79
spatial, 77–80
thermodynamic time, 81
time, 51, 80
Schmidt number, 128
sensitivity analysis, 60
shallow-water equations, 313
derivation, 338–346
similitude, 105
source
body, 86
chemical species, 87
mass, 87
momentum, 87
surface, 89–98
diffusion, 92
dispersion, 92
specific storage, 366
stability theorem, 149
state, 37
steady state, 38
stock market, 20
stress tensor, 280–281
Newtonian viscous, 288
symmetric, 287, 302
turbulent, 288
viscous, 286
superposition, 39
Super Bowl Sunday, 24
surface
source
energy, 94
mass, 93
momentum, 93
surface tension, 129
system
defined, 50
elements, 28
linear, 38
non-linear, 38
stable, 40
unstable, 40
systems, 28
environmental, 29

table of theorems, 211
table of tools, 211
Taylor series, 1
tensor, 277
elements, 278
thermal conductivity, 310
thermal expansion coefficient, 310
threshold population, 147
time derivative
Eulerian, 167
general, 167
Lagrangian, 167, 174
time of travel, 232
training, 4
transient, 38
transport theorem
Reynolds
special form, 223
transport theorem
derivation, 202–205
fixed volume, 207
general, 205
Reynolds, 206
truth, 64
uncertainty
aleatory, 54, 57
epistemic, 54, 57
reduction, 56–57
scenario, 27
sources, 54–55
statistical, 27
uncertainty quantification (UQ), 40, 60, 61
unit normal vector, 183
unsaturated zone, 353
V&V, 40, 58–60
validation, 34, 59
values
different, 27
equal, 27
variable
selection, 108
variables
distributed, 39
lumped, 39
macroscopic, 76
microscopic, 76
vector, 277
velocity, 89
advective, 97
apparent, 358
darcy, 359
diffusive, 97
dispersive, 97
molar average, 247
settling, 115
superficial, 358
verification, 34, 58
code, 59
input, 59
solution, 59
viscosity, 93
bulk, 288
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>115, 288</td>
</tr>
<tr>
<td>kinematic</td>
<td>289</td>
</tr>
<tr>
<td>water table</td>
<td>354</td>
</tr>
<tr>
<td>waves</td>
<td>98</td>
</tr>
<tr>
<td>electromagnetic</td>
<td>98</td>
</tr>
<tr>
<td>mechanical</td>
<td>98</td>
</tr>
<tr>
<td>compression</td>
<td>98</td>
</tr>
<tr>
<td>longitudinal</td>
<td>98</td>
</tr>
<tr>
<td>seismic</td>
<td>98</td>
</tr>
<tr>
<td>transverse</td>
<td>98</td>
</tr>
<tr>
<td>Weber number</td>
<td>130</td>
</tr>
<tr>
<td>weighting parameter</td>
<td>386</td>
</tr>
<tr>
<td>wetted perimeter</td>
<td>318</td>
</tr>
</tbody>
</table>