Environmental Systems and Societies for the IB Diploma

Second edition
Paul Guinness and Brenda Walpole
Contents

Introduction v
Acknowledgements vii
How to use this book ix

Topic 1 – Foundations of environmental systems and societies 1
 1.01 Environmental value systems 2
 1.02 Systems and models 16
 1.03 Energy and equilibria 24
 1.04 Sustainability 31
 1.05 Humans and pollution 39
 End-of-topic questions 48

Topic 2 – Ecosystems and ecology 50
 2.01 Species and populations 51
 2.02 Communities and ecosystems 62
 2.03 Flows of energy and matter 74
 2.04 Biomes, zonation and succession 86
 2.05 Investigating ecosystems 103
 End-of-topic questions 116

Topic 3 – Biodiversity and conservation 118
 3.01 An introduction to biodiversity 119
 3.02 Origins of biodiversity 123
 3.03 Threats to biodiversity 135
 3.04 Conservation of biodiversity 147
 End-of-topic questions 160

Topic 4 – Water and aquatic food production systems and societies 161
 4.01 Introduction to water systems 162
 4.02 Access to fresh water 171
 4.03 Aquatic food production systems 188
 4.04 Water pollution 198
 End-of-topic questions 211

Topic 5 – Soil systems and terrestrial food production systems and societies 212
 5.01 Introduction to soil systems 213
 5.02 Terrestrial food production systems and food choices 223
 5.03 Soil degradation and conservation 239
 End-of-topic questions 254
Contents

Topic 6 – Atmospheric systems and societies
6.01 Introduction to the atmosphere
6.02 Stratospheric ozone
6.03 Photochemical smog
6.04 Acid deposition
End-of-topic questions

Topic 7 – Climate change and energy production
7.01 Energy choices and security
7.02 Climate change – causes and impacts
7.03 Climate change – mitigation and adaptation
End-of-topic questions

Topic 8 – Human systems and resource use
8.01 Human population dynamics
8.02 Resource use in society
8.03 Solid domestic waste
8.04 Human population carrying capacity
End-of-topic questions

Answers to self-assessment questions

Answers to end-of-topic questions

Answers to case study questions

Glossary

Index
Introduction

This book covers the syllabus for the IB Diploma Programme Environmental Systems and Societies, which is offered at Standard Level only. Our understanding of the environment and its importance to our lives has grown rapidly over recent decades and the Environmental Systems and Societies course, which is a transdisciplinary subject combining the knowledge and techniques associated with a group 4 science subject and the social and cultural aspects of the more anthropocentric approach of a group 3 subject.

The book follows the sequence of the syllabus in terms of the eight topics and the sub-sections within these topics. The overall objective of this book is to provide comprehensive coverage of all the topics in the syllabus in an up-to-date and interesting format. Each topic is covered in a separate section and the significant ideas and key questions are listed at the start of each section. Case studies have been chosen to represent a wide range of geographical locations and biological examples, so that as you read, you can reflect on the essential international element of this course. Examples from across the environmental and economic spectrums highlight how our impact on the environment is not just an issue for one country or section of society but something important to us all. The book considers a range of environmental issues from small-scale local events to large-scale global issues. The use of ICT and technology in general has made all of us more aware than ever before of what is happening elsewhere in the world and of the implications that changes in other parts of the world can have on us.

Topic 1 Foundations of environmental systems and societies explains the environmental value systems that drive societies to protect and value the natural world. It outlines the essential systems approach to the study of this subject, identifying some of the underlying principles that can be applied to living systems. Your syllabus advocates a holistic approach to the analysis of environmental systems so that you can arrive at informed personal viewpoints while being aware of the values of others. The topic introduces important concepts of energy, sustainability and the impact of humans on the environment.

Topic 2 Ecosystems and ecology presents much of the basic scientific knowledge and understanding for the topics that follow. Techniques to measure and evaluate components of systems and how they can change are central to this topic which also covers the key concepts of species, populations, biomes and succession.

Topic 3 Biodiversity and conservation addresses issues of how biodiversity has arisen and how it is now under threat, mainly because of human interference in natural systems. Humans are attempting to redress the balance and some conservation options are covered here.

Topic 4 Water and aquatic food production systems and societies considers how access to fresh water is crucial to the survival of all living things. Humans use aquatic systems to harvest and produce food; as our population increases so do our demands on these resources. Fish farming and aquaculture may help feed future generations. Pollution of water is a problem discussed here.

Topic 5 Soil systems and terrestrial food production systems and societies provides detailed coverage of the planet’s soils in terms of systems, structure, how they are used for human benefit, and how their misuse is storing up major problems for the future. Understanding all aspects of soil systems around the world is fundamental to ensure food security for present and future populations. The topic begins with an introduction to soil systems, followed by consideration of terrestrial food production systems and food choices, and ends with analysis of soil degradation and conservation.

Topic 6 Atmospheric systems and societies begins with an introduction to the atmosphere which provides a basis for this topic and also for Topic 7. The three following sub-topics in Topic 6 consider major atmospheric issues which impact severely on people and the environment and may cumulatively threaten the future liveability of the planet. This topic examines the extent of these atmospheric problems and considers progress made in their management.

Topic 7 Climate change and energy production examines what is generally considered to be the number one problem facing planet Earth. The opening sub-topic sets the scene by acknowledging that production and consumption of energy are by far the most important factors in climate change. The concept of ‘security’ again comes to the fore, as it also does in Topic 4 (water) and
Introduction

Topic 5 (food). If significant further progress is to be made in tackling climate change, we will need to be reliant on a higher level of international cooperation than has been the case in the past along with significant advances in science and technology.

Topic 8 Human systems and resource use begins with an analysis of human population dynamics which considers the models and indicators used to quantify human populations, and the range of factors which affect human population growth. The topic then examines resource use in society, solid domestic waste, and human population carrying capacity. The important concept of the ecological footprint (EF) is discussed. The key concept of sustainability is central to this topic as it is to the study of environmental systems and societies in general.

The phrase ‘Think globally, act locally’ was first used by Scottish town planner and social activist Patrick Geddes, who wrote *Cities in Evolution* in 1915. It has since become a concept widely used by environmentalists and taken into consideration by governments, educators and communities. It is an idea on which we can all reflect in our daily lives and at the end of this book.

Full details of the Assessment Objectives and examination requirements for the Diploma Programme Environmental Systems and Societies course can be found in the relevant IBO guide.

Paul Guinness
Brenda Walpole
Acknowledgements

The authors and publishers acknowledge the following sources of copyright material and are grateful for the permissions granted. While every effort has been made, it has not always been possible to identify the sources of all material used, or to trace all copyright holders. If any omissions are brought to our notice, we will be happy to include the appropriate acknowledgements on reprinting.

p 374 text from www.rncalliance.org used with permission of the RNC Alliance; p381 ‘The cultural value of forests’ by Lara Barbier, April 2011 from the TEEB website bankofnaturalcapital.com; Figures 5.03 and 5.04 redrawn and reproduced with permission of Nelson Thornes Ltd from Geography: An integrated Approach (4th edn), David Waugh, 978-1–4085-0407, first published in 2009; Figure 5.20 adapted from figures by Floor Anthoni, seafriends.org.nz; p253–4 Table 5.05 from Soil Management and Agrodiversity: a case study from Arumeru, Arusha, Tanzania by FBS Kalhura, M Stocking and E Kahembe, 2008; Figures 4.01 and 4.02 redrawn from Digby et al. A2 Geography for Edexcel Student Book (OUP, 2009), reprinted by permission of Oxford University Press; Figure 4.16 redrawn from GCSE Geography, Garret Nagle, Hodder Education, Fig 22, p.148 reproduced with permission of Hodder Education; p144 extract from ‘The terrible lesson of the bee orchid’ by Richard Mabey, published by The Guardian, copyright © Richard Mabey, 2005 reproduced by permission of Shell Land Associates Ltd; Figures 4.29 and 4.30 Citizen Monitoring Biotic Index data recording form and key reproduced by permission of the Board of Regents of the University of Wisconsin System; Figures 8.21 and 8.22 from ‘Taking out the rubbish: municipal waste composition, trends and futures’ by Resource Futures, 2009; Figure 6.03 redrawn after Dr TR Oke, University of British Columbia in Atmosphere, Weather & Climate, Routledge, 1998; Figures 6.07, 6.09 and 6.10 redrawn from Atmospheric process and human influence, P Warburton, Collins Educational; figure 6.18 after Professor Richard Foust, Northern Arizona University; Figure 6.27 ‘What are scientists doing to better understand acid deposition?’ © Ecological Society of America; Table 7.09, reproduced by permission of Phillip Allan Updates; Figure 7.19 reprinted from The Lancet, Vol 367, Anthony J McMichael, Rosalie E Woodruff, Simon Heals, ‘Climate change and human health: present and future risks’, Figure 1, © 2006, with permission from Elsevier; Figure 7.20 from Geography, Vol 96, Spring 2011 by permission of the Geographical Association www.geography.org.uk; Figure 7.21 from ‘The IPCC messed up over Amazonste’e by George Monbiot, guardian.co.uk, 2nd July 2010, copyright Guardian News & Media Ltd 2010; Figure 10.1 ‘The Environmentalist objectives and strategies in the seventies’, page 372, first published in O’Riordan, T Environmentalism, 1981, Pion Ltd, London www.pion.co.uk/ww.

Thanks to the following for permission to reproduce photographs

p1, chapter opening page SPL; p4f Bettmann/Corbis; p4r Ria Novosti/SPL; Daniel Beltra/Greenpeace/naturepl.com; p9 Ashlund/Greenpeace; p12r SPL; p12 SPLb; p14 George Holton/SPL; p36 David South/Alamy; p37f Ron Nickel/Design Pics/Still Pictures; p37r Nazrul Islam/Majority World/Still Pictures; p39r SPL; p41 Ria Novosti/TopFoto/TopFoto.co.uk; p47r John Stanmeyer/VII/Corbis; p47b SPL; p50 SPL; p53r SPL; p53b Bob Gibbons/SPL; p56l SPL; p56r SPL; p60 Peter Bird, Dept of Primary Industries and Regions, South Australia/PIRSA; p72 Topham/AP/TopFoto.co.uk; p78 NASA Goodard Space Flight Center; p85 SPL; p88f SPL; p88r SPL; p90f SPL; p90r SPL; p91r SPL; p91m Gerry Ellis/Minden Pictures/FLPA, 91b Beth Davidson, Visuals Unlimited/SPL; p97r Biosphoto/Cyrill ruoso/BIOSphoto/Still Pictures, 97r Geoff Dore/naturepl.com; p99 blickwinker/Alamy; p101f Nick turner/naturepl.com, p67r Robin Chittenden/FLPA, p67r Chien Lee/Minden Pictures/FLPA; p102 David R. Frazier Photolibrary Inc/SPL; p102f Niall Benvie/naturepl.com; p106 David Hosking/FLPA; p109f Chris Linder/Visuals Unlimited/SPL; p110 Art Directors & Trip/Alamy; p118 SPL; Francois Savigny/naturepl.com; p124f SPL; FLPA/Alamy; p127r SPL; p128 © PR Grant and BR Grant; p138f ARCO/naturepl.com, 138f Lynn M Stone/naturepl.com; p139 l © Santiago Ron, p139r Alex Cortes, p139m zoomar.com/NicoSmitt/zoomar.de Specialist Stock, p139© D Hal Cogger; p140 Spencer Sutton/SPL; p141 Corbis; p142 SPL; p146 NASA EARTH Observatory/Jesse Allen/
Acknowledgements

Robert Simmon/NASA EO-1 team; p149 Prisma/Superstock; Alan Sirulnikoff/SPL; p154
Aaron Ferster/SPL; p163f Paul Guinness; p165 Paul Guinness; p173r and f Paul Guinness; p175l
Shutterstock, p175 www.wateraid.org; p177 Alamy; p179 Shutterstock; p189 SPL; p189 NASA/
Robert Simmon and Jesse Allen; p208 Ulrike Welsch/SPL, pp213, 214 r and f, 216,
219, 220, 224/ and r, 226, 240, 246/; p248, 250, 255, 259 f and r, 261, 270, 282, 286, 287, 288,
292/ and r, 301, 306, 309, 312, 313, 316, 322, 326, 327, 330/ and r, 338, 347, 349, 356, 357, 359,
com; p290 SPL; p350 Chris Guinness; p372 Mark Bowler/SPL; p375 Alamy; p375 James
Steinberg/SPL; p377 TopFoto/TopFoto.co.uk; p381 NunoHarada/Minden Pictures/Corbis;
p383 Topham Picturepoint/TopFoto/TopFoto.co.uk; p389 Photofusion Picture Library/Alamy;
p397 Silvere Teenacht/Eurelios/SPL; p403 TopFoto/TopFoto.co.uk.

Artwork on page 14r by John MacNeill; artworks on pages 13, 17, 82, 83, 94, 95, 106, 167,
181 and 185 are by Kathy Baxendale.

Abbreviations key: SPL = Science Photo Library; r = right; f = left; t = top; b = bottom.

The publisher would like to thank Dharmendra Dan Dubay of Shanghai American School,
Shanghai, Dr Andrea Peoples-Marwah of The Quarry Lane School, Dublin, California and
Anthony Brewer of Victoria Shanghai Academy, Hong Kong for reviewing the content of this
second edition.
How to use this book

Introduction to water systems

LEARNING OBJECTIVES
After reading this chapter you should be able to:
• understand that the hydrological cycle is a system of water flows and storages that may be disrupted by human activity
• appreciate that the ocean circulatory system (ocean conveyor belt) influences the climate and global distribution of water (matter and energy).

KEY QUESTIONS
How does water flow and how is it stored in the hydrological cycle?
How do human activities impact on surface runoff and infiltration?
What impact does the ocean circulation system have on the global distribution of water?

Self-assessment questions – check your own knowledge and see how well you’re getting on by answering questions. Each set of self-assessment questions includes a discussion point or research idea offering the opportunity for more extensive investigation and group work.

Consider this – particularly interesting aspects of each topic are highlighted throughout each chapter, providing extra opportunities for discussion in class.

Key terms – clear and straightforward explanations of the most important words in each topic.

Learning objectives and key questions – set the scene of each chapter, help with navigation through the book and give a reminder of what’s important about each topic.
How to use this book

Theory of knowledge - allow you to reflect on the central role of Theory of knowledge on our knowledge and understanding of environmental philosophy. Each one asks you to consider a question which could form the basis of group discussion or a homework task.

Case studies - fascinating real-world settings are described and discussed to illustrate environmental phenomena that are relevant internationally. Questions allow you to check your knowledge and understanding.

End-of-topic questions - use the questions at the end of each topic to check your knowledge and understanding of the whole topic and to practise answering questions similar to those you will encounter in your exams.